Unlocking the Potential of Data Augmentation in Contrastive Learning for Hyperspectral Image Classification

被引:6
|
作者
Li, Jinhui [1 ]
Li, Xiaorun [1 ]
Yan, Yunfeng [1 ]
机构
[1] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Peoples R China
关键词
data augmentation; band erasure; gradient mask; random occlusion; Bootstrap-Your-Own-Latent; hyperspectral image; spatial-spectral feature; FEATURE-EXTRACTION; AUTOENCODER;
D O I
10.3390/rs15123123
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite the rapid development of deep learning in hyperspectral image classification (HSIC), most models require a large amount of labeled data, which are both time-consuming and laborious to obtain. However, contrastive learning can extract spatial-spectral features from samples without labels, which helps to solve the above problem. Our focus is on optimizing the contrastive learning process and improving feature extraction from all samples. In this study, we propose the Unlocking-the-Potential-of-Data-Augmentation (UPDA) strategy, which involves adding superior data augmentation methods to enhance the representation of features extracted by contrastive learning. Specifically, we introduce three augmentation methods-band erasure, gradient mask, and random occlusion-to the Bootstrap-Your-Own-Latent (BYOL) structure. Our experimental results demonstrate that our method can effectively improve feature representation and thus improve classification accuracy. Additionally, we conduct ablation experiments to explore the effectiveness of different data augmentation methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Superpixelwise PCA based data augmentation for hyperspectral image classification
    Gao, Shang
    Jiang, Xinwei
    Zhang, Yongshan
    Liu, Xiaobo
    Xiong, Qianjin
    Cai, Zhihua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (34) : 81209 - 81229
  • [22] Negative Samples Mining Matters: Reconsidering Hyperspectral Image Classification With Contrastive Learning
    Liu, Hui
    Huang, Chenjia
    Chen, Ning
    Xie, Tao
    Lu, Mingyue
    Huang, Zhou
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [23] MCTGCL: Mixed CNNTransformer for Mars Hyperspectral Image Classification With Graph Contrastive Learning
    Xi, Bobo
    Zhang, Yun
    Li, Jiaojiao
    Zheng, Tie
    Zhao, Xunfeng
    Xu, Haitao
    Xue, Changbin
    Li, Yunsong
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [24] Deep Contrastive Learning Network for Small-Sample Hyperspectral Image Classification
    Liu, Quanyong
    Peng, Jiangtao
    Zhang, Genwei
    Sun, Weiwei
    Du, Qian
    JOURNAL OF REMOTE SENSING, 2023, 3
  • [25] Refined Prototypical Contrastive Learning for Few-Shot Hyperspectral Image Classification
    Liu, Quanyong
    Peng, Jiangtao
    Ning, Yujie
    Chen, Na
    Sun, Weiwei
    Du, Qian
    Zhou, Yicong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [26] Domain Fusion Contrastive Learning for Cross-Scene Hyperspectral Image Classification
    Qiu, Zhao
    Xu, Jie
    Peng, Jiangtao
    Sun, Weiwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [27] Contrastive Mutual Learning With Pseudo-Label Smoothing for Hyperspectral Image Classification
    Liu, Lizhu
    Zhang, Hui
    Wang, Yaonan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [28] Progressive Contrastive Learning Based on Noisy Negatives Cleaning for Hyperspectral Image Classification
    Zhao, Lin
    Feng, Yang
    Dai, YuanJie
    Wu, Jianhui
    Zhang, Guoyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [29] ConVaT: A Variational Generative Transformer With Momentum Contrastive Learning for Hyperspectral Image Classification
    Liang, Miaomiao
    Liu, Zuo
    Dong, Jian
    Yu, Lingjuan
    Yu, Xiangchun
    Li, Jun
    Jiao, Licheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [30] Contrastive Learning Based on Category Matching for Domain Adaptation in Hyperspectral Image Classification
    Ning, Yujie
    Peng, Jiangtao
    Liu, Quanyong
    Huang, Yi
    Sun, Weiwei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61