Stick-slip dynamics in the forced wetting of polymer brushes

被引:9
|
作者
Greve, Daniel [1 ]
Hartmann, Simon [1 ,2 ]
Thiele, Uwe [1 ,2 ]
机构
[1] Westfal Wilhelms Univ Munster, Inst Theoret Phys, Wilhelm Klemm Str 9, D-48149 Munster, Germany
[2] Westfal Wilhelms Univ Munster, Ctr Nonlinear Sci CeNoS, Corrensstr 2, D-48149 Munster, Germany
关键词
LIQUID CONTACT LINE; SURFACE; DROPS; ADSORPTION; DEPOSITION; EVOLUTION; MOTION; MODEL; SOFT;
D O I
10.1039/d3sm00104k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the static and dynamic wetting of adaptive substrates using a mesoscopic hydrodynamic model for a liquid droplet on a solid substrate covered by a polymer brush. First, we show that on the macroscale Young's law still holds for the equilibrium contact angle and that on the mesoscale a Neumann-type law governs the shape of the wetting ridge. Following an analytic and numeric assessment of the static profiles of droplet and wetting ridge, we examine the dynamics of the wetting ridge for a liquid meniscus that is advanced at constant mean speed. In other words, we consider an inverse Landau-Levich case where a brush-covered plate is introduced into (and not drawn from) a liquid bath. We find a characteristic stick-slip motion that emerges when the dynamic contact angle of the stationary moving meniscus decreases with increasing velocity, and relate the onset of slip to Gibbs' inequality and to a cross-over in relevant time scales.
引用
收藏
页码:4041 / 4061
页数:21
相关论文
共 50 条
  • [41] On the dynamics of piezoelectric-driven stick-slip actuators
    Chen, X. B.
    Kong, D.
    Zhang, Q. S.
    ADVANCES IN MACHINING AND MANUFACTURING TECHNOLOGY IX, 2008, 375-376 : 648 - 652
  • [42] Stick-slip dynamics of migrating cells on viscoelastic substrates
    De, Partho Sakha
    De, Rumi
    PHYSICAL REVIEW E, 2019, 100 (01)
  • [43] Modeling of stick-slip phenomena using molecular dynamics
    Mulliah, D
    Kenny, SD
    Smith, R
    PHYSICAL REVIEW B, 2004, 69 (20): : 205407 - 1
  • [44] KINEMATICS AND DYNAMICS OF STICK-SLIP EVENTS ON SAWCUT GRANITE
    ILLFELDER, HMJ
    WANG, H
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1975, 56 (09): : 601 - 602
  • [45] Nontrivial temporal scaling in a Galilean stick-slip dynamics
    Parteli, EJR
    Gomes, MAF
    Brito, VP
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [46] Stick-slip dynamics of a granular layer under shear
    Volfson, D
    Tsimring, LS
    Aranson, IS
    PHYSICAL REVIEW E, 2004, 69 (03): : 031302 - 1
  • [47] DYNAMICS OF A SELF-EXCITED STICK-SLIP OSCILLATOR WITH 2 DEGREES OF FREEDOM .2. SLIP-STICK, SLIP-SLIP, STICK-SLIP TRANSITIONS, PERIODIC AND CHAOTIC ORBITS
    AWREJCEWICZ, J
    DELFS, J
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 1990, 9 (05) : 397 - 418
  • [48] An example of stick-slip and stick-slip-separation waves
    Moirot, F
    Nguyen, QS
    Oueslati, A
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2003, 22 (01) : 107 - 118
  • [49] Self-spreading of the wetting ridge during stick-slip on a viscoelastic surface
    Park, S. J.
    Bostwick, J. B.
    De Andrade, V.
    Je, J. H.
    SOFT MATTER, 2017, 13 (44) : 8331 - 8336
  • [50] Slip dynamics at a patterned rubber/glass interface during stick-slip motions
    M. C. Audry
    C. Fretigny
    A. Chateauminois
    J. Teissere
    E. Barthel
    The European Physical Journal E, 2012, 35