Stick-slip dynamics in the forced wetting of polymer brushes

被引:9
|
作者
Greve, Daniel [1 ]
Hartmann, Simon [1 ,2 ]
Thiele, Uwe [1 ,2 ]
机构
[1] Westfal Wilhelms Univ Munster, Inst Theoret Phys, Wilhelm Klemm Str 9, D-48149 Munster, Germany
[2] Westfal Wilhelms Univ Munster, Ctr Nonlinear Sci CeNoS, Corrensstr 2, D-48149 Munster, Germany
关键词
LIQUID CONTACT LINE; SURFACE; DROPS; ADSORPTION; DEPOSITION; EVOLUTION; MOTION; MODEL; SOFT;
D O I
10.1039/d3sm00104k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the static and dynamic wetting of adaptive substrates using a mesoscopic hydrodynamic model for a liquid droplet on a solid substrate covered by a polymer brush. First, we show that on the macroscale Young's law still holds for the equilibrium contact angle and that on the mesoscale a Neumann-type law governs the shape of the wetting ridge. Following an analytic and numeric assessment of the static profiles of droplet and wetting ridge, we examine the dynamics of the wetting ridge for a liquid meniscus that is advanced at constant mean speed. In other words, we consider an inverse Landau-Levich case where a brush-covered plate is introduced into (and not drawn from) a liquid bath. We find a characteristic stick-slip motion that emerges when the dynamic contact angle of the stationary moving meniscus decreases with increasing velocity, and relate the onset of slip to Gibbs' inequality and to a cross-over in relevant time scales.
引用
收藏
页码:4041 / 4061
页数:21
相关论文
共 50 条
  • [41] Anisotropic stresslet and rheology of stick-slip Janus spheres
    Premlata, A. R.
    Wei, Hsien-Hung
    JOURNAL OF FLUID MECHANICS, 2022, 945
  • [42] Vibration and Noise Behaviors During Stick-Slip Friction
    Dong Conglin
    Mo Jilang
    Yuan Chengqing
    Bai Xiuqin
    Yu Tian
    TRIBOLOGY LETTERS, 2019, 67 (04)
  • [43] Investigation on the multiscale stick-slip phenomenon of cotton fabric
    Chen, Rongxin
    Zhang, Wei
    Sun, Wei
    Song, Qingrui
    Ye, Jiaxin
    Liu, Xiaojun
    Liu, Kun
    MATERIALS TODAY COMMUNICATIONS, 2021, 28
  • [44] Stick-slip behavior of ice streams: modeling investigations
    Sergienko, Olga V.
    Macayeal, Douglas R.
    Bindschadler, Robert A.
    ANNALS OF GLACIOLOGY, 2009, 50 (52) : 87 - 94
  • [45] A stick-slip piezoelectric actuator with measurable contact force
    Xu, Zhi
    Huang, Hu
    Dong, Jingshi
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 144 (144)
  • [46] Entropy Content During Nanometric Stick-Slip Motion
    Creeger, Paul
    Zypman, Fredy
    ENTROPY, 2014, 16 (06): : 3062 - 3073
  • [47] A stick-slip piezoelectric actuator with high assembly interchangeability
    Xu, Zhi
    Sun, Wuxiang
    Li, Xuan
    Huang, Hu
    Dong, Jingshi
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 233
  • [48] Sliding direction dependence of stick-slip in finger friction
    Xiang, Zhonghuan
    Li, Yuanzhe
    Zhou, Xue
    Bai, Pengpeng
    Meng, Yonggang
    Ma, Liran
    Tian, Yu
    TRIBOLOGY INTERNATIONAL, 2024, 191
  • [49] A Novel Stick-Slip Type Rotary Piezoelectric Actuator
    Wang, Yuan
    Xu, Minglong
    Shao, Shubao
    Song, Siyang
    Shao, Yan
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
  • [50] Stochastic stick-slip nanoscale friction on oxide surfaces
    Craciun, A. D.
    Gallani, J. L.
    Rastei, M. V.
    NANOTECHNOLOGY, 2016, 27 (05)