Lightweight aerial image object detection algorithm based on improved YOLOv5s

被引:40
作者
Deng, Lixia [1 ]
Bi, Lingyun [1 ]
Li, Hongquan [1 ]
Chen, Haonan [1 ]
Duan, Xuehu [1 ]
Lou, Haitong [1 ]
Zhang, Hongyu [1 ]
Bi, Jingxue [2 ]
Liu, Haiying [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Informat & Automat Engn, Jinan 250353, Shandong, Peoples R China
[2] Shandong Jianzhu Univ, Sch Surveying & Geo Informat, Jinan 250101, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41598-023-34892-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
YOLOv5 is one of the most popular object detection algorithms, which is divided into multiple series according to the control of network depth and width. To realize the deployment of mobile devices or embedded devices, the paper proposes a lightweight aerial image object detection algorithm (LAI-YOLOv5s) based on the improvement of YOLOv5s with a relatively small amount of calculation and parameter and relatively fast reasoning speed. Firstly, to better detect small objects, the paper replaces the minimum detection head with the maximum detection head and proposes a new feature fusion method, DFM-CPFN(Deep Feature Map Cross Path Fusion Network), to enrich the semantic information of deep features. Secondly, the paper designs a new module based on VoVNet to improve the feature extraction ability of the backbone network. Finally, based on the idea of ShuffleNetV2, the paper makes the network more lightweight without affecting detection accuracy. Based on the VisDrone2019 dataset, the detection accuracy of LAI-YOLOv5s on the mAP@0.5 index is 8.3% higher than that of the original algorithm. Compared with other series of YOLOv5 and YOLOv3 algorithms, LAI-YOLOv5s has the advantages of low computational cost and high detection accuracy.
引用
收藏
页数:10
相关论文
共 26 条
[1]  
Bochkovskiy A, 2020, Arxiv, DOI arXiv:2004.10934
[2]   VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Peng, Tao ;
Zheng, Jiayu ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Kumar, Aashish ;
Li, Aijin ;
Zinollayev, Almaz ;
Askergaliyev, Anuar ;
Schumann, Arne ;
Mao, Binjie ;
Lee, Byeongwon ;
Liu, Chang ;
Chen, Changrui ;
Pan, Chunhong ;
Huo, Chunlei ;
Yu, Da ;
Cong, Dechun ;
Zeng, Dening ;
Pailla, Dheeraj Reddy ;
Li, Di ;
Wang, Dong ;
Cho, Donghyeon ;
Zhang, Dongyu ;
Bai, Furui ;
Jose, George ;
Gao, Guangyu ;
Liu, Guizhong ;
Xiong, Haitao ;
Qi, Hao ;
Wang, Haoran ;
Qiu, Heqian ;
Li, Hongliang ;
Lu, Huchuan ;
Kim, Ildoo ;
Kim, Jaekyum ;
Shen, Jane ;
Lee, Jihoon ;
Ge, Jing ;
Xu, Jingjing ;
Zhou, Jingkai ;
Meier, Jonas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :213-226
[3]  
Du Q., 2021, IEEE GEOSCI REMOTE S, V19, P1
[4]  
Howard AG, 2017, Arxiv, DOI arXiv:1704.04861
[5]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]   Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) :1904-1916
[8]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[9]   ECAP-YOLO: Efficient Channel Attention Pyramid YOLO for Small Object Detection in Aerial Image [J].
Kim, Munhyeong ;
Jeong, Jongmin ;
Kim, Sungho .
REMOTE SENSING, 2021, 13 (23)
[10]   A CNN-Based Method of Vehicle Detection from Aerial Images Using Hard Example Mining [J].
Koga, Yohei ;
Miyazaki, Hiroyuki ;
Shibasaki, Ryosuke .
REMOTE SENSING, 2018, 10 (01)