Generalized Lucas polynomials over finite fields

被引:2
作者
Li, Lisha [1 ]
Wang, Qiang [2 ]
Zeng, Xiangyong [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
Finite field; Permutation polynomial; Dickson polynomial; Generalized Lucas polynomial; DICKSON POLYNOMIALS; PERMUTATION POLYNOMIALS; TRINOMIALS; BEHAVIOR; KIND;
D O I
10.1016/j.ffa.2023.102207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give necessary and sufficient conditions on n for the unsigned and signed generalized Lucas polynomials fn(x) and gn(x) being permutations over the prime field. Moreover, the permutation behaviours of these polynomials over non-prime fields are also discussed.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 45 条
[1]   A generalized lucas sequence and permutation binomials [J].
Akbary, A ;
Wang, Q .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :15-22
[2]   ON SOLUTION OF ALGEBRAIC EQUATIONS OVER FINITE FIELDS [J].
BERLEKAM.ER ;
RUMSEY, H ;
SOLOMON, G .
INFORMATION AND CONTROL, 1967, 10 (06) :553-&
[3]   Factoring Dickson polynomials over finite fields [J].
Bhargava, M ;
Zieve, ME .
FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (02) :103-111
[4]   New Wilson-like theorems arising from Dickson polynomials [J].
Bluher, Antonia W. .
FINITE FIELDS AND THEIR APPLICATIONS, 2021, 72
[5]   Codes, Bent Functions and Permutations Suitable for DES-like Cryptosystems [J].
Carlet C. ;
Charpin P. ;
Zinoviev V. .
Designs, Codes and Cryptography, 1998, 15 (2) :125-156
[6]  
Charpin P., 2015, IACR CRYPTOLOGY EPRI, P434
[7]  
CHOU WS, 1997, FINITE FIELDS APPL, V3, P84, DOI DOI 10.1006/FFTA.1996.0169
[8]  
Cipu M., 2004, SERDICA MATH J, V30, P177
[9]  
Cipu M, 2008, CONTEMP MATH, V461, P79
[10]   DICKSON POLYNOMIALS OF THE 2ND KIND THAT ARE PERMUTATIONS [J].
COHEN, SD .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (02) :225-238