Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for differential identification of adult Schistosoma worms

被引:2
作者
Ebersbach, Jurena Christiane [1 ]
Sato, Marcello Otake [2 ]
de Araujo, Matheus Pereira [2 ]
Sato, Megumi [3 ]
Becker, Soeren L. [1 ,4 ,5 ]
Sy, Issa [1 ]
机构
[1] Saarland Univ, Inst Med Microbiol & Hyg, Homburg, Germany
[2] Dokkyo Med Univ, Lab Trop Med & Parasitol, Mibu, Tochigi, Japan
[3] Niigata Univ, Grad Sch Hlth Sci, Niigata, Japan
[4] Swiss Trop & Publ Hlth Inst, Allschwil, Switzerland
[5] Univ Basel, Basel, Switzerland
关键词
Identification; Schistosoma mansoni; Schistosoma japonicum; Helminth; Matrix-assisted laser desorption; ionization-time of flight mass spectrometry; Trematode; Storage media; Machine learning; TOOL;
D O I
10.1186/s13071-022-05604-0
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Background Schistosomiasis is a major neglected tropical disease that affects up to 250 million individuals worldwide. The diagnosis of human schistosomiasis is mainly based on the microscopic detection of the parasite's eggs in the feces (i.e., for Schistosoma mansoni or Schistosoma japonicum) or urine (i.e., for Schistosoma haematobium) samples. However, these techniques have limited sensitivity, and microscopic expertise is waning outside endemic areas. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has become the gold standard diagnostic method for the identification of bacteria and fungi in many microbiological laboratories. Preliminary studies have recently shown promising results for parasite identification using this method. The aims of this study were to develop and validate a species-specific database for adult Schistosoma identification, and to evaluate the effects of different storage solutions (ethanol and RNAlater) on spectra profiles. Methods Adult worms (males and females) of S. mansoni and S. japonicum were obtained from experimentally infected mice. Species identification was carried out morphologically and by cytochrome oxidase 1 gene sequencing. Reference protein spectra for the creation of an in-house MALDI-TOF MS database were generated, and the database evaluated using new samples. We employed unsupervised (principal component analysis) and supervised (support vector machine, k-nearest neighbor, Random Forest, and partial least squares discriminant analysis) machine learning algorithms for the identification and differentiation of the Schistosoma species. Results All the spectra were correctly identified by internal validation. For external validation, 58 new Schistosoma samples were analyzed, of which 100% (58/58) were correctly identified to genus level (log score values >= 1.7) and 81% (47/58) were reliably identified to species level (log score values >= 2). The spectra profiles showed some differences depending on the storage solution used. All the machine learning algorithms classified the samples correctly. Conclusions MALDI-TOF MS can reliably distinguish adult S. mansoni from S. japonicum.
引用
收藏
页数:13
相关论文
共 31 条
[1]  
[Anonymous], 2022, CDC SCHISTOSOMIASIS
[2]   Machine learning-based analyses support the existence of species complexes forStrongyloides fuelleborniandStrongyloides stercoralis [J].
Barratt, Joel L. N. ;
Sapp, Sarah G. H. .
PARASITOLOGY, 2020, 147 (11) :1184-1195
[3]   Concurrent Proteomic Fingerprinting and Molecular Analysis of Cyathostomins [J].
Bredtmann, Christina Maria ;
Kruecken, Juergen ;
Murugaiyan, Jayaseelan ;
Balard, Alice ;
Hofer, Heribert ;
Kuzmina, Tetiana A. ;
von Samson-Himmelstjerna, Georg .
PROTEOMICS, 2019, 19 (07)
[4]   Rapid Classification of Clostridioides difficile Strains Using MALDI-TOF MS Peak-Based Assay in Comparison with PCR-Ribotyping [J].
Calderaro, Adriana ;
Buttrini, Mirko ;
Martinelli, Monica ;
Farina, Benedetta ;
Moro, Tiziano ;
Montecchini, Sara ;
Arcangeletti, Maria Cristina ;
Chezzi, Carlo ;
De Conto, Flora .
MICROORGANISMS, 2021, 9 (03)
[5]   Rapid and Reproducible MALDI-TOF-Based Method for the Detection of Vancomycin-Resistant Enterococcus faecium Using Classifying Algorithms [J].
Candela, Ana ;
Arroyo, Manuel J. ;
Sanchez-Molleda, Angela ;
Mendez, Gema ;
Quiroga, Lidia ;
Ruiz, Adrian ;
Cercenado, Emilia ;
Marin, Mercedes ;
Munoz, Patricia ;
Mancera, Luis ;
Rodriguez-Temporal, David ;
Rodriguez-Sanchez, Belen .
DIAGNOSTICS, 2022, 12 (02)
[6]   Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali (Publication with Expression of Concern) [J].
Diarra, Adama Zan ;
Almeras, Lionel ;
Laroche, Maureen ;
Berenger, Jean-Michel ;
Kone, Abdoulaye K. ;
Bocoum, Zakaria ;
Dabo, Abdoulaye ;
Doumbo, Ogobara ;
Raoult, Didier ;
Parola, Philippe .
PLOS NEGLECTED TROPICAL DISEASES, 2017, 11 (07)
[7]   Combination of MALDI-TOF Mass Spectrometry and Machine Learning for Rapid Antimicrobial Resistance Screening: The Case of Campylobacter spp. [J].
Feucherolles, Maureen ;
Nennig, Morgane ;
Becker, Soeren L. ;
Martiny, Delphine ;
Losch, Serge ;
Penny, Christian ;
Cauchie, Henry-Michel ;
Ragimbeau, Catherine .
FRONTIERS IN MICROBIOLOGY, 2022, 12
[8]   MALDI-TOF mass spectrometry as a diagnostic tool in human and veterinary helminthology: a systematic review [J].
Feucherolles, Maureen ;
Poppert, Sven ;
Utzinger, Jurg ;
Becker, Soren L. .
PARASITES & VECTORS, 2019, 12 (1)
[9]   Machine learning and applications in microbiology [J].
Goodswen, Stephen J. ;
Barratt, Joel L. N. ;
Kennedy, Paul J. ;
Kaufer, Alexa ;
Calarco, Larissa ;
Ellis, John T. .
FEMS MICROBIOLOGY REVIEWS, 2021, 45 (05)
[10]   Human schistosomiasis [J].
Colley, Daniel G. ;
Bustinduy, Amaya L. ;
Secor, Evan ;
King, Charles H. .
LANCET, 2014, 383 (9936) :2253-2264