Y2O3 electrodeposited TiO2 nanotube arrays as photoanode for enhanced photoelectrochemical water splitting

被引:9
作者
Sharma, Shuchi [1 ,2 ,3 ]
Shanmugam, Ramasamy [4 ]
Harikrishna, R. B. [1 ,2 ,5 ]
Prasad, U. [3 ]
Rao, G. Ranga [1 ,2 ]
Kannan, A. M. [3 ]
机构
[1] Indian Inst Technol Madras, Dept Chem, Chennai 600036, India
[2] Indian Inst Technol Madras, DST Solar Energy Harnessing Ctr DSEHC, Chennai 600036, India
[3] Arizona State Univ, Polytech Sch, Ira A Fulton Sch Engn, Mesa, AZ 85212 USA
[4] Vellore Inst Technol, CO2 Res & Green Technol Ctr, Vellore 632014, India
[5] Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, India
关键词
TiO2; nanotubes; Deposition; Photoelectrochemical water; splitting; HYDROGEN-PRODUCTION; OXIDATION; TITANIUM;
D O I
10.1016/j.ijhydene.2023.07.176
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Y2O3 deposited TiO2 nanotubes (Y-TNTs) are investigated as photoanodes for efficient photoelectrochemical water splitting. Y2O3 is electrodeposited on TiO2 nanotubes for 5-15 min. The physicochemical and optical properties of Y-TNTs reveal that Y2O3 anchored on the TNTs enhances the visible light absorption. The Y-TNTs show good photocurrent response compared to pristine TNTs. Y2O3 deposition for 10 min on TNTs produces highest photocurrent of 609 mA cm-2 at 1.23 VRHE. Presence of Y2O3 increases the lifetime of the charge carriers as revealed by the Nyquist plot analysis and Mott-Schottky analysis. Y-TNTs-10 min sample shows 2.75 times higher photoconversion efficiency compared to pristine TNTs. Computational analysis shows that Y-TiO2 has negative free energy of adsorption for OER intermediates as compared to bare TiO2 which has positive values. The rare earth metal electrodeposition on TiO2 nanotubes is another approach to improve the photoelectrochemical water splitting activity without distorting the nanotube structure. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1415 / 1427
页数:13
相关论文
共 49 条
  • [1] Interpretation and use of Mott-Schottky plots at the semiconductor/electrolyte interface
    Albery, WJ
    OShea, GJ
    Smith, AL
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (20): : 4083 - 4085
  • [2] [Anonymous], 2022, US department of energy national clean hydrogen strategy and roadmap, P1
  • [3] [Anonymous], 2022, GEOP EN TRANSF HYDR
  • [4] Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review
    Arifin, Khuzaimah
    Yunus, Rozan Mohamad
    Minggu, Lorna Jeffery
    Kassim, Mohammad B.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (07) : 4998 - 5024
  • [5] ASSEFPOURDEZFULY M, 1984, J MATER SCI, V19, P3626, DOI 10.1007/BF02396935
  • [6] Potential of solar thermochemical water-splitting cycles: A review
    Budama, Vishnu Kumar
    Duarte, Juan Pablo Rincon
    Roeb, Martin
    Sattler, Christian
    [J]. SOLAR ENERGY, 2023, 249 : 353 - 366
  • [7] Improved photoelectrochemical properties of TiO2 nanotubes doped with Er and effects on hydrogen production from water splitting
    Cho, Hyekyung
    Joo, Hyunku
    Kim, Hansung
    Kim, Ji-Eun
    Kang, Kyoung-Soo
    Yoon, Jaekyung
    [J]. CHEMOSPHERE, 2021, 267
  • [8] Roadmap on solar water splitting: current status and future prospects
    Chu, Sheng
    Li, Wei
    Yan, Yanfa
    Hamann, Thomas
    Shih, Ishiang
    Wang, Dunwei
    Mi, Zetian
    [J]. NANO FUTURES, 2017, 1 (02)
  • [9] A ?just? hydrogen economy: A normative energy justice assessment of the hydrogen economy
    Dillman, K. J.
    Heinonen, J.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [10] Advanced oxygen evolution reaction catalysts for solar-driven photoelectrochemical water splitting
    Dong, Guojun
    Yan, Lianglin
    Bi, Yingpu
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (08) : 3888 - 3903