Simulation study of a novel small animal FLASH irradiator (SAFI) with integrated inverse-geometry CT based on circularly distributed kV X-ray sources

被引:0
作者
Tan, Yuewen [1 ,2 ,3 ]
Zhou, Shuang [1 ]
Haefner, Jonathan [1 ]
Chen, Qinghao [1 ]
Mazur, Thomas R. [1 ]
Darafsheh, Arash [1 ]
Zhang, Tiezhi [1 ]
机构
[1] Washington Univ, Sch Med St Louis, Dept Radiat Oncol, St Louis, MO 63110 USA
[2] Washington Univ St Louis, Dept Phys, St Louis, MO 63130 USA
[3] Columbia Univ, Ctr Radiol Res, New York, NY 10032 USA
基金
美国国家卫生研究院;
关键词
VALIDATION;
D O I
10.1038/s41598-023-47421-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ultra-high dose rate (UHDR) radiotherapy (RT) or FLASH-RT can potentially reduce normal tissue toxicity. A small animal irradiator that can deliver FLASH-RT treatments similar to clinical RT treatments is needed for pre-clinical studies of FLASH-RT. We designed and simulated a novel small animal FLASH irradiator (SAFI) based on distributed x-ray source technology. The SAFI system comprises a distributed x-ray source with 51 focal spots equally distributed on a 20 cm diameter ring, which are used for both FLASH-RT and onboard micro-CT imaging. Monte Carlo simulation was performed to estimate the dosimetric characteristics of the SAFI treatment beams. The maximum dose rate, which is limited by the power density of the tungsten target, was estimated based on finite-element analysis (FEA). The maximum DC electron beam current density is 2.6 mA/mm(2), limited by the tungsten target's linear focal spot power density. At 160 kVp, 51 focal spots, each with a dimension of 2x20 mm(2) and 10 degrees anode angle, can produce up to 120 Gy/s maximum DC irradiation at the center of a cylindrical water phantom. We further demonstrate forward and inverse FLASH-RT planning, as well as inverse-geometry micro-CT with circular source array imaging via numerical simulations.
引用
收藏
页数:12
相关论文
共 38 条
  • [1] The FLASH effect depends on oxygen concentration
    Adrian, Gabriel
    Konradsson, Elise
    Lempart, Michael
    Back, Sven
    Ceberg, Crister
    Petersson, Kristoffer
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1106)
  • [2] Recent developments in GEANT4
    Allison, J.
    Amako, K.
    Apostolakis, J.
    Arce, P.
    Asai, M.
    Aso, T.
    Bagli, E.
    Bagulya, A.
    Banerjee, S.
    Barrand, G.
    Beck, B. R.
    Bogdanov, A. G.
    Brandt, D.
    Brown, J. M. C.
    Burkhardt, H.
    Canal, Ph.
    Cano-Ott, D.
    Chauvie, S.
    Cho, K.
    Cirrone, G. A. P.
    Cooperman, G.
    Cortes-Giraldo, M. A.
    Cosmo, G.
    Cuttone, G.
    Depaola, G.
    Desorgher, L.
    Dong, X.
    Dotti, A.
    Elvira, V. D.
    Folger, G.
    Francis, Z.
    Galoyan, A.
    Garnier, L.
    Gayer, M.
    Genser, K. L.
    Grichine, V. M.
    Guatelli, S.
    Gueye, P.
    Gumplinger, P.
    Howard, A. S.
    Hrivnacova, I.
    Hwang, S.
    Incerti, S.
    Ivanchenko, A.
    Ivanchenko, V. N.
    Jones, F. W.
    Jun, S. Y.
    Kaitaniemi, P.
    Karakatsanis, N.
    Karamitrosi, M.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 : 186 - 225
  • [3] On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates
    Bazalova-Carter, Magdalena
    Esplen, Nolan
    [J]. MEDICAL PHYSICS, 2019, 46 (12) : 5690 - 5695
  • [4] Feasibility of proton FLASH effect tested by zebrafish embryo irradiation
    Beyreuther, Elke
    Brand, Michael
    Hans, Stefan
    Hideghety, Katalin
    Karsch, Leonhard
    Lessmann, Elisabeth
    Schuerer, Michael
    Szabo, Emilia Rita
    Pawelke, Jorg
    [J]. RADIOTHERAPY AND ONCOLOGY, 2019, 139 : 46 - 50
  • [5] Treatment of a first patient with FLASH-radiotherapy
    Bourhis, Jean
    Sozzi, Wendy Jeanneret
    Jorge, Patrik Goncalves
    Gaide, Olivier
    Bailat, Claude
    Duclos, Frederic
    Patin, David
    Ozsahin, Mahmut
    Bochud, Francois
    Germond, Jean-Francois
    Moeckli, Raphael
    Vozenin, Marie-Catherine
    [J]. RADIOTHERAPY AND ONCOLOGY, 2019, 139 : 18 - 22
  • [6] Clinical translation of FLASH radiotherapy: Why and how?
    Bourhis, Jean
    Montay-Gruel, Pierre
    Jorge, Patrik Goncalves
    Bailat, Claude
    Petit, Benoit
    Ollivier, Jonathan
    Jeanneret-Sozzi, Wendy
    Ozsahin, Mahmut
    Bochud, Francois
    Moeckli, Raphael
    Germond, Jean-Francois
    Vozenin, Marie-Catherine
    [J]. RADIOTHERAPY AND ONCOLOGY, 2019, 139 : 11 - 17
  • [7] FLASH Radiation Therapy: New Technology Plus Biology Required
    Buchsbaum, Jeffrey C.
    Coleman, C. Norman
    Espey, Michael G.
    Prasanna, Pataje G. S.
    Capala, Jacek
    Ahmed, Mansoor M.
    Hong, Julie A.
    Obcemea, Ceferino
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 110 (04): : 1248 - 1249
  • [8] Characterization of an x-ray tube-based ultrahigh dose-rate system for in vitro irradiations
    Cecchi, Daniel D.
    Therriault-Proulx, Francois
    Lambert-Girard, Simon
    Hart, Alexander
    Macdonald, Andrew
    Pfleger, Mike
    Lenckowski, Mark
    Bazalova-Carter, Magdalena
    [J]. MEDICAL PHYSICS, 2021, 48 (11) : 7399 - 7409
  • [9] Tetrahedron beam imaging with a multi-pixel thermionic emission X-ray source and a photon-counting detector: A benchtop experimental study
    Chen, Qinghao
    Zhou, Shuang
    Tan, Yuewen
    Yao, Hao
    Zhang, Zhongwei
    Mazur, Tom
    Zhang, Tiezhi
    [J]. MEDICAL PHYSICS, 2021, 48 (11) : 7250 - 7260
  • [10] Spread-out Bragg peak proton FLASH irradiation using a clinical synchrocyclotron: Proof of concept and ion chamber characterization
    Darafsheh, Arash
    Hao, Yao
    Zhao, Xiandong
    Zwart, Townsend
    Wagner, Miles
    Evans, Tucker
    Reynoso, Francisco
    Zhao, Tianyu
    [J]. MEDICAL PHYSICS, 2021, : 4472 - 4484