On Connected Graphs with Distance Eigenvalue -1 of Multiplicity at Least n-4

被引:0
|
作者
Yang, Yuhong [1 ,2 ]
机构
[1] Tianjin Univ Technol, Inst Signal Proc & Machine Learning, Coll Sci, Tianjin 300384, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
distance hereditary graph; distance spectrum; canonical graph; primitive graph; 2; SINGULAR-VALUES; COMBINATORIAL DESIGNS; REGULAR GRAPHS; ENERGY; SPECTRA;
D O I
10.1142/S1005386723000482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(n) ([-1](i)) denote the set of all connected graphs on n vertices having distance eigenvalue -1 of multiplicity i . By using the distribution of the third largest distance eigenvalue and the second least distance eigenvalue of a connected graph, in this paper we completely characterize the graphs in G(n) ([-1](i)), where i= n - 1 , n - 2 , n - 3 or n - 4 .
引用
收藏
页码:639 / 648
页数:10
相关论文
共 4 条
  • [1] The Characterization of Graphs with Eigenvalue-1 of Multiplicity n-4 or n-5
    Yang, Yuhong
    Huang, Qiongxiang
    FILOMAT, 2019, 33 (18) : 5919 - 5933
  • [2] The graphs with the least distance eigenvalue at least-1+√17/2
    Li, Dan
    Meng, Jixiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 : 358 - 380
  • [3] On graphs whose smallest distance (signless Laplacian) eigenvalue has large multiplicity
    Lu, Lu
    Huang, Qiongxiang
    Huang, Xueyi
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (11): : 2218 - 2231
  • [4] Characterization of graphs with some normalized Laplacian eigenvalue of multiplicity n-3
    Tian, Fenglei
    Wong, Dein
    Wang, Sai
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 606 : 127 - 143