On the Laplacian and Signless Laplacian Characteristic Polynomials of a Digraph

被引:4
作者
Ganie, Hilal A. A. [1 ]
Shang, Yilun [2 ]
机构
[1] Jammu & Kashmir Govt, Dept Sch Educ, Kashmir 193404, India
[2] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NE1 8ST, England
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
digraphs; adjacency matrix (spectrum); (signless) Laplacian matrix (spectrum); (signless) Laplacian coefficients; NORMALIZED LAPLACIAN; SPECTRAL-RADIUS; BOUNDS; GRAPHS; ENERGY;
D O I
10.3390/sym15010052
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let D be a digraph with n vertices and a arcs. The Laplacian and the signless Laplacian matrices of D are, respectively, defined as L(D)=Deg(+)(D)-A(D) and Q(D)=Deg(+)(D)+A(D), where A(D) represents the adjacency matrix and Deg(+)(D) represents the diagonal matrix whose diagonal elements are the out-degrees of the vertices in D. We derive a combinatorial representation regarding the first few coefficients of the (signless) Laplacian characteristic polynomial of D. We provide concrete directed motifs to highlight some applications and implications of our results. The paper is concluded with digraph examples demonstrating detailed calculations.
引用
收藏
页数:12
相关论文
共 24 条
[1]   Merging the Spectral Theories of Distance Estrada and Distance Signless Laplacian Estrada Indices of Graphs [J].
Alhevaz, Abdollah ;
Baghipur, Maryam ;
Shang, Yilun .
MATHEMATICS, 2019, 7 (10)
[2]   On the Second-Largest Reciprocal Distance Signless Laplacian Eigenvalue [J].
Baghipur, Maryam ;
Ghorbani, Modjtaba ;
Ganie, Hilal A. ;
Shang, Yilun .
MATHEMATICS, 2021, 9 (05) :1-12
[3]   Energy of weighted digraphs [J].
Bhat, Mushtaq A. .
DISCRETE APPLIED MATHEMATICS, 2017, 223 :1-14
[4]  
Chat BA, 2019, CARPATHIAN J MATH, V35, P31
[5]   Signless Laplacians of finite graphs [J].
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) :155-171
[6]   On the coefficients of skew Laplacian characteristic polynomial of digraphs [J].
Ganie, Hilal A. ;
Ingole, Archana ;
Deshmukh, Ujwala .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (05)
[7]   An (increasing) sequence of lower bounds for the spectral radius and energy of digraphs [J].
Ganie, Hilal A. ;
Carmona, Juan R. .
DISCRETE MATHEMATICS, 2023, 346 (01)
[8]   On the spectral radius and energy of signless Laplacian matrix of digraphs [J].
Ganie, Hilal A. ;
Shang, Yilun .
HELIYON, 2022, 8 (03)
[9]   Bounds for the energy of weighted graphs [J].
Ganie, Hilal A. ;
Chat, Bilal A. .
DISCRETE APPLIED MATHEMATICS, 2019, 268 :91-101
[10]   BOUNDS FOR THE SKEW LAPLACIAN (SKEW ADJACENCY) SPECTRAL RADIUS OF A DIGRAPH [J].
Ganie, Hilal A. .
TRANSACTIONS ON COMBINATORICS, 2019, 8 (02) :1-12