Estimation of slope stability using ensemble-based hybrid machine learning approaches

被引:0
|
作者
Ragam, Prashanth [1 ]
Kumar, N. Kushal [1 ]
Ajith, Jubilson E. [1 ]
Karthik, Guntha [2 ]
Himanshu, Vivek Kumar [3 ]
Machupalli, Divya Sree [1 ]
Murlidhar, Bhatawdekar Ramesh [4 ,5 ]
机构
[1] VIT AP Univ, Sch Comp Sci & Engn, Amaravati, Andhra Pradesh, India
[2] Stanley Coll Engn & Technol Women Autonomous, Dept Elect & Commun Engn, Hyderabad, Telangana, India
[3] CSIR Cent Inst Min & Fuel Res, Dhanbad, India
[4] Univ Teknol Malaysia, Fac Engn, Ctr Trop Geoengn Geotrop, Sch Civil Engn, Skudai, Johor, Malaysia
[5] Indian Inst Technol, Dept Min Engn, Kharagpur, India
关键词
slope stability; factor of safety (FOS); slope failure; XGBoost; XGBoost-RF; R-2; RMSE; NEURAL-NETWORKS; ROCK SLOPES; PREDICTION; FAILURE; MODELS;
D O I
10.3389/fmats.2024.1330609
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mining is one of the most daunting occupations gain the sector since it entails risk at any point in the operation. In its operation, the main focus is on slope stability. To avoid slope failures, work should be performed in line with both the regulations and the safety criteria. Slope stability is essential in mining activities owing to slope failure putting productivity and safety at risk. Prediction of slope failure is difficult because of the complexity of traditional engineering techniques. Through study, recent technologies have helped mining companies predict slope problems quickly and effectively. In this current research, an ensemble of machine learning intelligence algorithms was used to estimate and assess the Factor of Safety (FOS). In Ostapal Chromicte Mine, India, 79 experimental and failure slope occurrences were tracked to gather in-the-moment field data. The available data were split into training and testing sets at random to build algorithms. The five influenced factors such as the unit weight, the friction angle, the cohesiveness, the mining depth, as well as the slope angle used as input variables to estimate the FOS. Selected machine learning techniques such as Multiple Linear Regression (MLR), Decision Tree, Random Forest (RF), eXtreme Gradient Boosting (XGBoost) and ensemble hybrid model combining eXtreme Gradient Boosting and Random Forest (XGBoost-RF) were developed to evaluate the FOS. The validity and efficiency of created models can be evaluated using standard evaluation parameters such as coefficient of determination (R (2)), root mean square error (RMSE), mean square error (MSE), normalized root mean square error (NRMSE), mean absolute percentage error (MAPE) and mean absolute deviation (MAD). The most precise model to assess the FOS across all models was discovered to be the XGBOOST-RF ensemble model, which had a high R (2) of 0.931, MSE of 0.009, NRMSE of 0.069, MAD of 0.037, MAPE of 3.581 and an RMSE of 0.098.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Lamb wave damage severity estimation using ensemble-based machine learning method with separate model network
    Rizvi, Syed Haider M.
    Abbas, Muntazir
    SMART MATERIALS AND STRUCTURES, 2021, 30 (11)
  • [12] Prediction of drug synergy in cancer using ensemble-based machine learning techniques
    Singh, Harpreet
    Rana, Prashant Singh
    Singh, Urvinder
    MODERN PHYSICS LETTERS B, 2018, 32 (11):
  • [13] Fast Estimation of Slope Stability Based on Gaussian Process Machine Learning
    Su, Guoshao
    Zhang, Yan
    Chen, Guoqing
    Yan, Liubin
    DISASTER ADVANCES, 2013, 6 : 81 - 91
  • [14] An Ensemble-Based Machine Learning Model for Estimation of Subsurface Thermal Structure in the South China Sea
    Qi, Jifeng
    Liu, Chuanyu
    Chi, Jianwei
    Li, Delei
    Gao, Le
    Yin, Baoshu
    REMOTE SENSING, 2022, 14 (13)
  • [15] Prediction of Interface Shear Stiffness Modulus of Asphalt Pavement using Bagging Ensemble-based Hybrid Machine Learning Model
    Bui, Quynh-Anh Thi
    Nguyen, Duc Dam
    Iqbal, Mudassir
    Jalal, Fazal E.
    Prakash, Indra
    Pham, Binh Thai
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (10) : 13889 - 13900
  • [16] Prediction of Interface Shear Stiffness Modulus of Asphalt Pavement using Bagging Ensemble-based Hybrid Machine Learning Model
    Quynh-Anh Thi Bui
    Duc Dam Nguyen
    Mudassir Iqbal
    Fazal E. Jalal
    Indra Prakash
    Binh Thai Pham
    Arabian Journal for Science and Engineering, 2023, 48 : 13889 - 13900
  • [17] Assessment of Ensemble-Based Machine Learning Algorithms for Exoplanet Identification
    Luz, Thiago S. F.
    Braga, Rodrigo A. S.
    Ribeiro, Enio R.
    ELECTRONICS, 2024, 13 (19)
  • [18] An efficient ensemble-based Machine Learning for breast cancer detection
    Kapila, Ramdas
    Saleti, Sumalatha
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [19] Ensemble-Based Machine Learning for Predicting Sudden Human Fall Using Health Data
    Saxena, Utkarsh
    Moulik, Soumen
    Nayak, Soumya Ranjan
    Hanne, Thomas
    Roy, Diptendu Sinha
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [20] Prognosis and Prediction of Breast Cancer Using Machine Learning and Ensemble-Based Training Model
    Gupta, Niharika
    Kaushik, Bau Nath
    COMPUTER JOURNAL, 2023, 66 (01): : 70 - 85