Estimation of slope stability using ensemble-based hybrid machine learning approaches

被引:1
|
作者
Ragam, Prashanth [1 ]
Kumar, N. Kushal [1 ]
Ajith, Jubilson E. [1 ]
Karthik, Guntha [2 ]
Himanshu, Vivek Kumar [3 ]
Machupalli, Divya Sree [1 ]
Murlidhar, Bhatawdekar Ramesh [4 ,5 ]
机构
[1] VIT AP Univ, Sch Comp Sci & Engn, Amaravati, Andhra Pradesh, India
[2] Stanley Coll Engn & Technol Women Autonomous, Dept Elect & Commun Engn, Hyderabad, Telangana, India
[3] CSIR Cent Inst Min & Fuel Res, Dhanbad, India
[4] Univ Teknol Malaysia, Fac Engn, Ctr Trop Geoengn Geotrop, Sch Civil Engn, Skudai, Johor, Malaysia
[5] Indian Inst Technol, Dept Min Engn, Kharagpur, India
关键词
slope stability; factor of safety (FOS); slope failure; XGBoost; XGBoost-RF; R-2; RMSE; NEURAL-NETWORKS; ROCK SLOPES; PREDICTION; FAILURE; MODELS;
D O I
10.3389/fmats.2024.1330609
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mining is one of the most daunting occupations gain the sector since it entails risk at any point in the operation. In its operation, the main focus is on slope stability. To avoid slope failures, work should be performed in line with both the regulations and the safety criteria. Slope stability is essential in mining activities owing to slope failure putting productivity and safety at risk. Prediction of slope failure is difficult because of the complexity of traditional engineering techniques. Through study, recent technologies have helped mining companies predict slope problems quickly and effectively. In this current research, an ensemble of machine learning intelligence algorithms was used to estimate and assess the Factor of Safety (FOS). In Ostapal Chromicte Mine, India, 79 experimental and failure slope occurrences were tracked to gather in-the-moment field data. The available data were split into training and testing sets at random to build algorithms. The five influenced factors such as the unit weight, the friction angle, the cohesiveness, the mining depth, as well as the slope angle used as input variables to estimate the FOS. Selected machine learning techniques such as Multiple Linear Regression (MLR), Decision Tree, Random Forest (RF), eXtreme Gradient Boosting (XGBoost) and ensemble hybrid model combining eXtreme Gradient Boosting and Random Forest (XGBoost-RF) were developed to evaluate the FOS. The validity and efficiency of created models can be evaluated using standard evaluation parameters such as coefficient of determination (R (2)), root mean square error (RMSE), mean square error (MSE), normalized root mean square error (NRMSE), mean absolute percentage error (MAPE) and mean absolute deviation (MAD). The most precise model to assess the FOS across all models was discovered to be the XGBOOST-RF ensemble model, which had a high R (2) of 0.931, MSE of 0.009, NRMSE of 0.069, MAD of 0.037, MAPE of 3.581 and an RMSE of 0.098.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Probabilistic slope stability analysis using subset simulation enhanced by ensemble machine learning techniques
    Ahmad, Furquan
    Samui, Pijush
    Mishra, S. S.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (02) : 2133 - 2158
  • [12] A hybrid ensemble method for improved prediction of slope stability
    Qi, Chongchong
    Tang, Xiaolin
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2018, 42 (15) : 1823 - 1839
  • [13] Machine-Learning-Based Classification Approaches toward Recognizing Slope Stability Failure
    Moayedi, Hossein
    Dieu Tien Bui
    Kalantar, Bahareh
    Foong, Loke Kok
    APPLIED SCIENCES-BASEL, 2019, 9 (21):
  • [14] Application of Machine Learning Techniques for the Estimation of the Safety Factor in Slope Stability Analysis
    Nanehkaran, Yaser Ahangari
    Pusatli, Tolga
    Jin Chengyong
    Chen, Junde
    Cemiloglu, Ahmed
    Azarafza, Mohammad
    Derakhshani, Reza
    WATER, 2022, 14 (22)
  • [15] Rock slope stability analysis and charts based on hybrid online sequential extreme learning machine model
    Deng, Chao
    Hu, Huanxiao
    Zhang, Tianle
    Chen, Jiale
    EARTH SCIENCE INFORMATICS, 2020, 13 (03) : 729 - 746
  • [16] Cone penetration test-based assessment of liquefaction potential using machine and hybrid learning approaches
    Khatti, Jitendra
    Fissha, Yewuhalashet
    Grover, Kamaldeep Singh
    Ikeda, Hajime
    Toriya, Hisatoshi
    Adachi, Tsuyoshi
    Kawamura, Youhei
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (04) : 3841 - 3864
  • [17] Ensemble-Based Approaches Ensure Reliability and Reproducibility
    Wan, Shunzhou
    Bhati, Agastya P.
    Wade, Alexander D.
    Coveney, Peter V.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (22) : 6959 - 6963
  • [18] Obesity Prediction Using Ensemble Machine Learning Approaches
    Jindal, Kapil
    Baliyan, Niyati
    Rana, Prashant Singh
    RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 2, 2018, 708 : 355 - 362
  • [19] Probabilistic slope stability analysis of Heavy-haul freight corridor using a hybrid machine learning paradigm
    Bardhan, Abidhan
    Samui, Pijush
    TRANSPORTATION GEOTECHNICS, 2022, 37
  • [20] Surrogate Model Development for Slope Stability Analysis Using Machine Learning
    Li, Xianfeng
    Nishio, Mayuko
    Sugawara, Kentaro
    Iwanaga, Shoji
    Chun, Pang-jo
    SUSTAINABILITY, 2023, 15 (14)