Numerical computation of magnetic field with melting heat and homogeneous-heterogeneous chemical reaction effects on oblique stagnation flow of variable viscosity micropolar Fe3O4 nanofluids

被引:1
作者
Mehmood, R. [1 ]
Tabassum, Rabil [1 ,2 ]
Akbar, Noreen Sher [3 ]
Muhammad, Taseer [4 ]
机构
[1] HITEC Univ, Fac Nat Sci, Dept Math, Taxila Cantt, Pakistan
[2] Air Univ, Fac Basic & Appl Sci, Dept Math, Islamabad, Pakistan
[3] Natl Univ Sci & Technol, DBS&H, CEME, Islamabad, Pakistan
[4] King Khalid Univ, Coll Sci, Dept Math, Abha, Saudi Arabia
关键词
ADM; boundary layers; homogeneous-heterogeneous reactions; magnetic solar nano-coatings; MATLAB; Maxwell-Garnett model; micropolar nanofluid; oblique stagnation flow; temperature-dependent viscosity; thermo-solutal magneto-hydrodynamics; volume fraction; MIXED CONVECTION FLOW; POINT FLOW; STRETCHING SHEET; MASS-TRANSFER; POROUS-MEDIUM; NANO FLUID; BOUNDARY; TRANSPORT; SURFACE; THERMOPHORESIS;
D O I
10.1080/10407790.2024.2321495
中图分类号
O414.1 [热力学];
学科分类号
摘要
The complex micro-structural characteristics of electro-conductive sol gel materials require simultaneous consideration of magneto-hydrodynamics, micro-rheology and also physico-chemical phenomena. In this editorial, a mathematical model is therefore developed to simulate the steady-state, oblique (non-orthogonal) stagnation flow of electro-conductive micropolar magneto-nano-liquid flow impacting on an extending horizontal plane under the impact of transverse magnetic field. To capture the sophisticated physico-chemistry, the simultaneous presence of homogeneous and heterogeneous chemical reactions is considered. Viscosity depending upon temperature is taken into consideration with Reynolds' exponential model. Tiwari-Das and Maxwell-Garnett nano-liquid models are deployed which modifies density, thermal conductivity and electrical conductivity with volume fraction of nano-sized particles.
引用
收藏
页码:1784 / 1809
页数:26
相关论文
共 67 条
[31]   Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat [J].
Khan, W. A. ;
Makinde, O. D. ;
Khan, Z. H. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 96 :525-534
[32]   Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer [J].
Labropulu, F. ;
Li, D. ;
Pop, I. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (06) :1042-1050
[33]   Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet [J].
Latiff, Nur Amalina Abdul ;
Uddin, Md Jashim ;
Beg, O. Anwar ;
Ismail, Ahmad Izani .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2016, 230 (04) :177-187
[34]  
Liu C. M., 2016, ACM, V5, P121, DOI [10.11648/j.acm.20160503.15, DOI 10.11648/J.ACM.20160503.15]
[35]   Steady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface [J].
Lok, YY ;
Amin, N ;
Campean, D ;
Pop, I .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2005, 15 (07) :654-670
[36]  
Mabood F., 2015, INT J ENG MATH, DOI [10.1155/2015/272079, DOI 10.1155/2015/272079]
[37]  
Mahapatra TR, 2002, HEAT MASS TRANSFER, V38, P517, DOI [10.1007/s002310100215, 10.1007/S002310100215]
[38]   Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate [J].
Mehmood, Rashid ;
Nadeem, S. ;
Saleem, S. ;
Akbar, Noreen Sher .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 74 :49-58
[39]   Oblique Stagnation Point Flow of a Casson-Nano Fluid Towards a Stretching Surface with Heat Transfer [J].
Nadeem, S. ;
Mehmood, Rashid ;
Akbar, Noreen Sher .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2014, 11 (06) :1422-1432
[40]   Axisymmetric Stagnation Flow of a Micropolar Nanofluid in a Moving Cylinder [J].
Nadeem, S. ;
Rehman, Abdul ;
Vajravelu, K. ;
Lee, Jinho ;
Lee, Changhoon .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012