An optical flow estimation method based on multiscale anisotropic convolution

被引:19
作者
Wang, Yifan [1 ]
Li, Yang [1 ]
Wang, Jiaqi [1 ]
Lv, Haofeng [1 ]
机构
[1] Changchun Univ Sci & Technol, Sch Elect & Informat Engn, Changchun 130022, Peoples R China
关键词
Optical flow estimation; Multiscale anisotropy; Dilated convolution; Deformable convolution; SUPERRESOLUTION; NETWORK;
D O I
10.1007/s10489-023-05131-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To solve the tracking accuracy degradation problem in scenarios with large displacements or nonrigid motion during target tracking, this paper proposes an optical flow estimation method based on multiscale anisotropic convolution. The network structure is improved in a step-by-step manner by extracting the data flow from the network according to the observed features. For the low-level neural network, a layered multiscale structure is used to build a cascade network by using hybrid dilated convolution to obtain feature information at different scales while ensuring the tracking accuracy. For the upper-layer neural network, hybrid inflated deformable convolution is used by learning the contextual long-range correlations and multidirectional adaptive offsets of features. Experiments are conducted on the Flying Chairs, KITTI, and MPI datasets. The results show that compared with various popular algorithm methods, the model in this paper reduces endpoint errors while retaining edge information in regions with large displacements or nonrigid motion. Code is available at https://github.com/yifanna/MACFlow-pytorch.
引用
收藏
页码:398 / 413
页数:16
相关论文
共 46 条
[1]   Approaches to moving object detection and parameter estimation in a video sequence for the transport analysis system [J].
Alpatov, Boris Alekseevich ;
Babayan, Pavel Vartanovich ;
Ershov, Maksim Dmitrievich .
COMPUTER OPTICS, 2020, 44 (05) :746-+
[2]  
[Anonymous], 2018, IEEE Trans Pattern Anal Mach Intell
[3]   Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation [J].
Brox, Thomas ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (03) :500-513
[4]   A Naturalistic Open Source Movie for Optical Flow Evaluation [J].
Butler, Daniel J. ;
Wulff, Jonas ;
Stanley, Garrett B. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :611-625
[5]   mSODANet: A network for multi-scale object detection in aerial images using hierarchical dilated convolutions * [J].
Chalavadi, Vishnu ;
Jeripothula, Prudviraj ;
Datla, Rajeshreddy ;
Babu, Sobhan Ch ;
Mohan, Krishna C. .
PATTERN RECOGNITION, 2022, 126
[6]  
Chen HX, 2023, IEEE T INSTRUM MEAS, V72, DOI [10.1109/TIM.2023.3238698, 10.1109/TIM.2023.3314821]
[7]   Video super-resolution network using detail component extraction and optical flow enhancement algorithm [J].
Chen, Zhensen ;
Yang, Wenyuan ;
Yang, Jingmin .
APPLIED INTELLIGENCE, 2022, 52 (09) :10234-10246
[8]   An automatic quality evaluator for video object segmentation masks [J].
Cheng, Jingchun ;
Song, Jiajie ;
Xiong, Rui ;
Pan, Xiong ;
Zhang, Chunxi .
MEASUREMENT, 2022, 194
[9]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[10]   A proper generalized decomposition approach for optical flow estimation [J].
El Hamidi, Abdallah ;
Saleh, Marwan ;
Papadakis, Nicolas ;
de Senneville, B. Denis .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) :5339-5356