Effects of Salt Stress on Grain Yield and Quality Parameters in Rice Cultivars with Differing Salt Tolerance

被引:19
|
作者
Li, Zhikang [1 ,2 ]
Zhou, Tianyang [1 ,2 ]
Zhu, Kuanyu [1 ,2 ]
Wang, Weilu [1 ,2 ]
Zhang, Weiyang [1 ,2 ]
Zhang, Hao [1 ,2 ]
Liu, Lijun [1 ,2 ]
Zhang, Zujian [1 ,2 ]
Wang, Zhiqin [1 ,2 ]
Wang, Baoxiang [3 ]
Xu, Dayong [3 ]
Gu, Junfei [1 ,2 ]
Yang, Jianchang [1 ,2 ]
机构
[1] Yangzhou Univ, Jiangsu Key Lab Crop Genet & Physiol, Jiangsu Key Lab Crop Cultivat & Physiol, Coll Agr, Yangzhou 225009, Peoples R China
[2] Yangzhou Univ, Jiangsu Coinnovat Ctr Modern Prod Technol Grain Cr, Yangzhou 225009, Peoples R China
[3] Lianyungang Acad Agr Sci, Lianyungang 222000, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 18期
基金
中国国家自然科学基金;
关键词
salt stress; rice starch; grain yield; rice quality; structure and physicochemical properties; SALINITY; RESPONSES; COOKING; STARCH; FUTURE; GROWTH;
D O I
10.3390/plants12183243
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rice yield and grain quality are highly sensitive to salinity stress. Salt-tolerant/susceptible rice cultivars respond to salinity differently. To explore the variation in grain yield and quality to moderate/severe salinity stress, five rice cultivars differing in degrees of salt tolerance, including three salt-tolerant rice cultivars (Lianjian 5, Lianjian 6, and Lianjian 7) and two salt-susceptible rice cultivars (Wuyunjing 30 and Lianjing 7) were examined. Grain yield was significantly decreased under salinity stress, while the extent of yield loss was lesser in salt-tolerant rice cultivars due to the relatively higher grain filling ratio and grain weight. The milling quality continued to increase with increasing levels. There were genotypic differences in the responses of appearance quality to mild salinity. The appearance quality was first increased and then decreased with increasing levels of salinity stress in salt-tolerant rice but continued to decrease in salt-susceptible rice. Under severe salinity stress, the protein accumulation was increased and the starch content was decreased; the content of short branched-chain of amylopectin was decreased; the crystallinity and stability of the starch were increased, and the gelatinization temperature was increased. These changes resulted in the deterioration of cooking and eating quality of rice under severe salinity-stressed environments. However, salt-tolerant and salt-susceptible rice cultivars responded differently to moderate salinity stress in cooking and eating quality and in the physicochemical properties of the starch. For salt-tolerant rice cultivars, the chain length of amylopectin was decreased, the degrees of order of the starch structure were decreased, and pasting properties and thermal properties were increased significantly, whereas for salt-susceptible rice cultivars, cooking and eating quality was deteriorated under moderate salinity stress. In conclusion, the selection of salt-tolerant rice cultivars can effectively maintain the rice production at a relatively high level while simultaneously enhancing grain quality in moderate salinity-stressed environments. Our results demonstrate specific salinity responses among the rice genotypes and the planting of salt-tolerant rice under moderate soil salinity is a solution to ensure rice production in China.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Effects of multiple halotolerant rhizobacteria on the tolerance, growth, and yield of rice plants under salt stress
    Sarker, Protup Kumer
    Karmoker, Dola
    Shohan, Mohammad Umer Sharif
    Saha, Anik Kumar
    Rima, Fahmida Sultana
    Begum, Rifat Ara
    Islam, Md. Rakibul
    Seraj, Zeba Islam
    FOLIA MICROBIOLOGICA, 2023, 68 (01) : 55 - 72
  • [42] Effects of Salt Stress on Physiological and Agronomic Traits of Rice Genotypes with Contrasting Salt Tolerance
    Xu, Yunming
    Bu, Weicheng
    Xu, Yuchao
    Fei, Han
    Zhu, Yiming
    Ahmad, Irshad
    Nimir, Nimir Eltyb Ahmed
    Zhou, Guisheng
    Zhu, Guanglong
    PLANTS-BASEL, 2024, 13 (08):
  • [43] Effects of multiple halotolerant rhizobacteria on the tolerance, growth, and yield of rice plants under salt stress
    Protup Kumer Sarker
    Dola Karmoker
    Mohammad Umer Sharif Shohan
    Anik Kumar Saha
    Fahmida Sultana Rima
    Rifat Ara Begum
    Md. Rakibul Islam
    Zeba Islam Seraj
    Folia Microbiologica, 2023, 68 : 55 - 72
  • [44] Salinity effect on grain quality of two durum wheat varieties differing in salt tolerance
    Katerji, N
    van Hoorn, JW
    Fares, C
    Hamdy, A
    Mastrorilli, M
    Oweis, T
    AGRICULTURAL WATER MANAGEMENT, 2005, 75 (02) : 85 - 91
  • [45] Effects, tolerance mechanisms and management of salt stress in grain legumes
    Farooq, Muhammad
    Gogoi, Nirmali
    Hussain, Mubshar
    Barthakur, Sharmistha
    Paul, Sreyashi
    Bharadwaj, Nandita
    Migdadi, Hussein M.
    Alghamdi, Salem S.
    Siddique, Kadambot H. M.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 118 : 199 - 217
  • [46] Interactive effects of salinity and air humidity on two tomato cultivars differing in salt tolerance
    An, P
    Inanaga, S
    Li, XJ
    Eneji, AE
    Zhu, NW
    JOURNAL OF PLANT NUTRITION, 2005, 28 (03) : 459 - 473
  • [47] Salt stress induces physiochemical alterations in rice grain composition and quality
    Razzaq, Abdul
    Ali, Arfan
    Bin Safdar, Luqman
    Zafar, Muhammad Mubashar
    Rui, Yang
    Shakeel, Amir
    Shaukat, Abbad
    Ashraf, Muhammad
    Gong, Wankui
    Yuan, Youlu
    JOURNAL OF FOOD SCIENCE, 2020, 85 (01) : 14 - 20
  • [48] EFFECTS OF AMMONIUM-SULFATE ON NA/CL UPTAKE BY RICE CULTIVARS DIFFERING IN SALT TOLERANCE - EXPERIMENTS WITH SOIL AND SOLUTION CULTURE
    KANNAN, S
    RAMANI, S
    JOURNAL OF PLANT NUTRITION, 1987, 10 (9-16) : 1795 - 1804
  • [49] The ionic effects of NaCl on physiology and gene expression in rice genotypes differing in salt tolerance
    Roshandel, Parto
    Flowers, Timothy
    PLANT AND SOIL, 2009, 315 (1-2) : 135 - 147
  • [50] Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance
    Dionisio-Sese, ML
    Tobita, S
    JOURNAL OF PLANT PHYSIOLOGY, 2000, 157 (01) : 54 - 58