Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges

被引:57
作者
Fauseweh, Benedikt [1 ,2 ]
机构
[1] German Aerosp Ctr DLR, Inst Software Technol, D-51147 Cologne, Germany
[2] TU Dortmund Univ, Dept Phys, Otto Hahn Str 4, D-44227 Dortmund, Germany
基金
英国科研创新办公室;
关键词
LIGHT-INDUCED SUPERCONDUCTIVITY; TENSOR NETWORKS; ORDER; COMPUTATION; DYNAMICS;
D O I
10.1038/s41467-024-46402-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simulating quantum many-body systems is a key application for emerging quantum processors. While analog quantum simulation has already demonstrated quantum advantage, its digital counterpart has recently become the focus of intense research interest due to the availability of devices that aim to realize general-purpose quantum computers. In this perspective, we give a selective overview of the currently pursued approaches, review the advances in digital quantum simulation by comparing non-variational with variational approaches and identify hardware and algorithmic challenges. Based on this review, the question arises: What are the most promising problems that can be tackled with digital quantum simulation? We argue that problems of a qualitative nature are much more suitable for near-term devices then approaches aiming purely for a quantitative accuracy improvement. Digital quantum simulations of quantum many-body systems have emerged as one of the most promising applications of near-term quantum computing. This Perspective article provides an overview and an outlook on future developments in this field.
引用
收藏
页数:13
相关论文
共 183 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   Quantum Computer Systems for Scientific Discovery [J].
Alexeev, Yuri ;
Bacon, Dave ;
Brown, Kenneth R. ;
Calderbank, Robert ;
Carr, Lincoln D. ;
Chong, Frederic T. ;
DeMarco, Brian ;
Englund, Dirk ;
Farhi, Edward ;
Fefferman, Bill ;
Gorshkov, Alexey, V ;
Houck, Andrew ;
Kim, Jungsang ;
Kimmel, Shelby ;
Lange, Michael ;
Lloyd, Seth ;
Lukin, Mikhail D. ;
Maslov, Dmitri ;
Maunz, Peter ;
Monroe, Christopher ;
Preskill, John ;
Roetteler, Martin ;
Savage, Martin J. ;
Thompson, Jeff .
PRX QUANTUM, 2021, 2 (01)
[3]  
Arute F, 2020, Arxiv, DOI [arXiv:2010.07965, 10.48550/arXiv.2010.07965]
[4]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/NPHYS2253, 10.1038/nphys2253]
[5]   SU(2) hadrons on a quantum computer via a variational approach [J].
Atas, Yasar Y. ;
Zhang, Jinglei ;
Lewis, Randy ;
Jahanpour, Amin ;
Haase, Jan F. ;
Muschik, Christine A. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]  
Baldwin CH, 2022, QUANTUM-AUSTRIA, V6
[7]   FIRST 100-QUBIT QUANTUM COMPUTER ENTERS CROWDED RACE [J].
Ball, Philip .
NATURE, 2021, 599 (7886) :542-542
[8]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[9]   An efficient quantum algorithm for the time evolution of parameterized circuits [J].
Barison, Stefano ;
Vicentini, Filippo ;
Carleo, Giuseppe .
QUANTUM, 2021, 5
[10]   An open-system quantum simulator with trapped ions [J].
Barreiro, Julio T. ;
Mueller, Markus ;
Schindler, Philipp ;
Nigg, Daniel ;
Monz, Thomas ;
Chwalla, Michael ;
Hennrich, Markus ;
Roos, Christian F. ;
Zoller, Peter ;
Blatt, Rainer .
NATURE, 2011, 470 (7335) :486-491