Self-propulsion of a droplet induced by combined diffusiophoresis and Marangoni effects

被引:3
作者
Wang, Yuhang [1 ]
Zheng, Longtao [1 ]
Li, Gaojin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Ocean & Civil Engn, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Ocean & Civil Engn, Shanghai 200240, Peoples R China
基金
上海市自然科学基金;
关键词
active droplet; diffusiophoresis; Marangoni effect; SURFACTANT TRANSFER; MOTION; INSTABILITY;
D O I
10.1002/elps.202400005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Chemically active droplets display complex self-propulsion behavior in homogeneous surfactant solutions, often influenced by the interplay between diffusiophoresis and Marangoni effects. Previous studies have primarily considered these effects separately or assumed axisymmetric motion. To understand the full hydrodynamics, we investigate the motion of a two-dimensional active droplet under their combined influences using weakly nonlinear analysis and numerical simulations. The impact of two key factors, the Peclet number (Pe$Pe$) and the mobility ratio between diffusiophoretic and Marangoni effects (m$m$), on droplet motion is explored. We establish a phase diagram in the Pe-m$Pe-m$ space, categorizing the boundaries between four types of droplet states: stationary, steady motion, periodic/quasi-periodic motion, and chaotic motion. We find that the mobility ratio does not affect the critical Pe$Pe$ for the onset of self-propulsion, but it significantly influences the stability of high-wavenumber modes as well as the droplet's velocity and trajectory. Scaling analysis reveals that in the high Pe$Pe$ regime, the Marangoni and diffusiophoresis effects lead to distinct velocity scaling laws: U similar to Pe-1/2$U\sim Pe<^>{-1/2}$ and U similar to Pe-1/3$U\sim Pe<^>{-1/3}$, respectively. When these effects are combined, the velocity scaling depends on the sign of the mobility ratio. In cases with a positive mobility ratio, the Marangoni effect dominates the scaling, whereas the negative diffusiophoretic effect leads to an increased thickness of the concentration boundary layer and a flattened scaling of the droplet velocity.
引用
收藏
页码:2154 / 2168
页数:15
相关论文
共 58 条
[41]   DROP MOTION WITH SURFACTANT TRANSFER IN AN INHOMOGENEOUS-MEDIUM [J].
REDNIKOV, AY ;
RYAZANTSEV, YS ;
VELARDE, MG .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1994, 37 (SUPPL 1) :361-374
[42]   ON THE DEVELOPMENT OF TRANSLATIONAL SUBCRITICAL MARANGONI INSTABILITY FOR A DROP WITH UNIFORM INTERNAL HEAT-GENERATION [J].
REDNIKOV, AY ;
RYAZANTSEV, YS ;
VELARDE, MG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1994, 164 (01) :168-180
[43]   Phoretic self-propulsion of a slightly inhomogeneous disc [J].
Saha, S. ;
Yariv, E. .
JOURNAL OF FLUID MECHANICS, 2022, 940
[44]  
Saha S., 2021, J FLUID MECH, P916
[45]   Marangoni flow at droplet interfaces: Three-dimensional solution and applications [J].
Schmitt, M. ;
Stark, H. .
PHYSICS OF FLUIDS, 2016, 28 (01)
[46]   Swimming active droplet: A theoretical analysis [J].
Schmitt, M. ;
Stark, H. .
EPL, 2013, 101 (04)
[47]   Weakly nonlinear dynamics of a chemically active particle near the threshold for spontaneous motion. I. Adjoint method [J].
Schnitzer, Ory .
PHYSICAL REVIEW FLUIDS, 2023, 8 (03)
[48]   Straight-to-Curvilinear Motion Transition of a Swimming Droplet Caused by the Susceptibility to Fluctuations [J].
Suda, Saori ;
Suda, Tomoharu ;
Ohmura, Takuya ;
Ichikawa, Masatoshi .
PHYSICAL REVIEW LETTERS, 2021, 127 (08)
[49]   Spontaneous Mode Switching of Self-Propelled Droplet Motion Induced by a Clock Reaction in the Belousov-Zhabotinsky Medium [J].
Suematsu, Nobuhiko J. ;
Mori, Yoshihito ;
Amemiya, Takashi ;
Nakata, Satoshi .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (31) :7526-7530
[50]   Mode-Switching of the Self-Motion of a Camphor Boat Depending on the Diffusion Distance of Camphor Molecules [J].
Suematsu, Nobuhiko J. ;
Ikura, Yumihiko ;
Nagayama, Masaharu ;
Kitahata, Hiroyuki ;
Kawagishi, Nao ;
Murakami, Mai ;
Nakata, Satoshi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (21) :9876-9882