Understanding Antimicrobial Resistance Using Genome-Scale Metabolic Modeling

被引:7
作者
Alonso-Vasquez, Tania [1 ]
Fondi, Marco [1 ]
Perrin, Elena [1 ]
机构
[1] Univ Florence, Dept Biol, Via Madonna Del Piano 6, I-50019 Florence, Italy
来源
ANTIBIOTICS-BASEL | 2023年 / 12卷 / 05期
关键词
metabolic modeling; antimicrobial resistance; bacterial metabolism; FLUX-BALANCE ANALYSIS; PSEUDOMONAS-AERUGINOSA; ANTIBIOTICS INDUCE; PERSISTENCE; MECHANISM; VIRULENCE; DEATH; COST; COLI;
D O I
10.3390/antibiotics12050896
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
The urgent necessity to fight antimicrobial resistance is universally recognized. In the search of new targets and strategies to face this global challenge, a promising approach resides in the study of the cellular response to antimicrobial exposure and on the impact of global cellular reprogramming on antimicrobial drugs' efficacy. The metabolic state of microbial cells has been shown to undergo several antimicrobial-induced modifications and, at the same time, to be a good predictor of the outcome of an antimicrobial treatment. Metabolism is a promising reservoir of potential drug targets/adjuvants that has not been fully exploited to date. One of the main problems in unraveling the metabolic response of cells to the environment resides in the complexity of such metabolic networks. To solve this problem, modeling approaches have been developed, and they are progressively gaining in popularity due to the huge availability of genomic information and the ease at which a genome sequence can be converted into models to run basic phenotype predictions. Here, we review the use of computational modeling to study the relationship between microbial metabolism and antimicrobials and the recent advances in the application of genome-scale metabolic modeling to the study of microbial responses to antimicrobial exposure.
引用
收藏
页数:19
相关论文
共 114 条
[71]   optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space of Genome-Scale Metabolic Networks [J].
Megchelenbrink, Wout ;
Huynen, Martijn ;
Marchiori, Elena .
PLOS ONE, 2014, 9 (02)
[72]   The fitness costs of antibiotic resistance mutations [J].
Melnyk, Anita H. ;
Wong, Alex ;
Kassen, Rees .
EVOLUTIONARY APPLICATIONS, 2015, 8 (03) :273-283
[73]   Flux Balance Analysis with Objective Function Defined by Proteomics Data-Metabolism of Mycobacterium tuberculosis Exposed to Mefloquine [J].
Montezano, Daniel ;
Meek, Laura ;
Gupta, Rashmi ;
Bermudez, Luiz E. ;
Bermudez, Jose C. M. .
PLOS ONE, 2015, 10 (07)
[74]   Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis [J].
Murray, Christopher J. L. ;
Ikuta, Kevin Shunji ;
Sharara, Fablina ;
Swetschinski, Lucien ;
Aguilar, Gisela Robles ;
Gray, Authia ;
Han, Chieh ;
Bisignano, Catherine ;
Rao, Puja ;
Wool, Eve ;
Johnson, Sarah C. ;
Browne, Annie J. ;
Chipeta, Michael Give ;
Fell, Frederick ;
Hackett, Sean ;
Haines-Woodhouse, Georgina ;
Hamadani, Bahar H. Kashef ;
Kumaran, Emmanuelle A. P. ;
McManigal, Barney ;
Agarwal, Ramesh ;
Akech, Samuel ;
Albertson, Samuel ;
Amuasi, John ;
Andrews, Jason ;
Aravkin, Aleskandr ;
Ashley, Elizabeth ;
Bailey, Freddie ;
Baker, Stephen ;
Basnyat, Buddha ;
Bekker, Adrie ;
Bender, Rose ;
Bethou, Adhisivam ;
Bielicki, Julia ;
Boonkasidecha, Suppawat ;
Bukosia, James ;
Carvalheiro, Cristina ;
Castaneda-Orjuela, Carlos ;
Chansamouth, Vilada ;
Chaurasia, Suman ;
Chiurchiu, Sara ;
Chowdhury, Fazle ;
Cook, Aislinn J. ;
Cooper, Ben ;
Cressey, Tim R. ;
Criollo-Mora, Elia ;
Cunningham, Matthew ;
Darboe, Saffiatou ;
Day, Nicholas P. J. ;
De Luca, Maia ;
Dokova, Klara .
LANCET, 2022, 399 (10325) :629-655
[75]   Structural systems pharmacology: A framework for integrating metabolic network and structure-based virtual screening for drug discovery against bacteria [J].
Nazarshodeh, Elmira ;
Marashi, Sayed-Amir ;
Gharaghani, Sajjad .
PLOS ONE, 2021, 16 (12)
[76]   iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE [J].
Norsigian, Charles J. ;
Kavvas, Erol ;
Seif, Yara ;
Palsson, Bernhard O. ;
Monk, Jonathan M. .
FRONTIERS IN GENETICS, 2018, 9
[77]   A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011 [J].
Orth, Jeffrey D. ;
Conrad, Tom M. ;
Na, Jessica ;
Lerman, Joshua A. ;
Nam, Hojung ;
Feist, Adam M. ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[78]   What is flux balance analysis? [J].
Orth, Jeffrey D. ;
Thiele, Ines ;
Palsson, Bernhard O. .
NATURE BIOTECHNOLOGY, 2010, 28 (03) :245-248
[79]   Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance [J].
Overhage, Joerg ;
Bains, Manjeet ;
Brazas, Michelle D. ;
Hancock, Robert E. W. .
JOURNAL OF BACTERIOLOGY, 2008, 190 (08) :2671-2679
[80]   Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data [J].
Passi, Anurag ;
Tibocha-Bonilla, Juan D. ;
Kumar, Manish ;
Tec-Campos, Diego ;
Zengler, Karsten ;
Zuniga, Cristal .
METABOLITES, 2022, 12 (01)