Understanding Antimicrobial Resistance Using Genome-Scale Metabolic Modeling

被引:7
作者
Alonso-Vasquez, Tania [1 ]
Fondi, Marco [1 ]
Perrin, Elena [1 ]
机构
[1] Univ Florence, Dept Biol, Via Madonna Del Piano 6, I-50019 Florence, Italy
来源
ANTIBIOTICS-BASEL | 2023年 / 12卷 / 05期
关键词
metabolic modeling; antimicrobial resistance; bacterial metabolism; FLUX-BALANCE ANALYSIS; PSEUDOMONAS-AERUGINOSA; ANTIBIOTICS INDUCE; PERSISTENCE; MECHANISM; VIRULENCE; DEATH; COST; COLI;
D O I
10.3390/antibiotics12050896
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
The urgent necessity to fight antimicrobial resistance is universally recognized. In the search of new targets and strategies to face this global challenge, a promising approach resides in the study of the cellular response to antimicrobial exposure and on the impact of global cellular reprogramming on antimicrobial drugs' efficacy. The metabolic state of microbial cells has been shown to undergo several antimicrobial-induced modifications and, at the same time, to be a good predictor of the outcome of an antimicrobial treatment. Metabolism is a promising reservoir of potential drug targets/adjuvants that has not been fully exploited to date. One of the main problems in unraveling the metabolic response of cells to the environment resides in the complexity of such metabolic networks. To solve this problem, modeling approaches have been developed, and they are progressively gaining in popularity due to the huge availability of genomic information and the ease at which a genome sequence can be converted into models to run basic phenotype predictions. Here, we review the use of computational modeling to study the relationship between microbial metabolism and antimicrobials and the recent advances in the application of genome-scale metabolic modeling to the study of microbial responses to antimicrobial exposure.
引用
收藏
页数:19
相关论文
共 114 条
[1]   Futile cycling increases sensitivity toward oxidative stress in Escherichia coli [J].
Adolfsen, Kristin J. ;
Brynildsen, Mark P. .
METABOLIC ENGINEERING, 2015, 29 :26-35
[2]   Mechanisms and clinical relevance of bacterial heteroresistance [J].
Andersson, Dan, I ;
Nicoloff, Herve ;
Hjort, Karin .
NATURE REVIEWS MICROBIOLOGY, 2019, 17 (08) :479-496
[3]   KBase: The United States Department of Energy Systems Biology Knowledgebase [J].
Arkin, Adam P. ;
Cottingham, Robert W. ;
Henry, Christopher S. ;
Harris, Nomi L. ;
Stevens, Rick L. ;
Maslov, Sergei ;
Dehal, Paramvir ;
Ware, Doreen ;
Perez, Fernando ;
Canon, Shane ;
Sneddon, Michael W. ;
Henderson, Matthew L. ;
Riehl, William J. ;
Murphy-Olson, Dan ;
Chan, Stephen Y. ;
Kamimura, Roy T. ;
Kumari, Sunita ;
Drake, Meghan M. ;
Brettin, Thomas S. ;
Glass, Elizabeth M. ;
Chivian, Dylan ;
Gunter, Dan ;
Weston, David J. ;
Allen, Benjamin H. ;
Baumohl, Jason ;
Best, Aaron A. ;
Bowen, Ben ;
Brenner, Steven E. ;
Bun, Christopher C. ;
Chandonia, John-Marc ;
Chia, Jer-Ming ;
Colasanti, Ric ;
Conrad, Neal ;
Davis, James J. ;
Davison, Brian H. ;
DeJongh, Matthew ;
Devoid, Scott ;
Dietrich, Emily ;
Dubchak, Inna ;
Edirisinghe, Janaka N. ;
Fang, Gang ;
Faria, Jose P. ;
Frybarger, Paul M. ;
Gerlach, Wolfgang ;
Gerstein, Mark ;
Greiner, Annette ;
Gurtowski, James ;
Haun, Holly L. ;
He, Fei ;
Jain, Rashmi .
NATURE BIOTECHNOLOGY, 2018, 36 (07) :566-569
[4]   Definitions and guidelines for research on antibiotic persistence [J].
Balaban, Nathalie Q. ;
Helaine, Sophie ;
Lewis, Kim ;
Ackermann, Martin ;
Aldridge, Bree ;
Andersson, Dan I. ;
Brynildsen, Mark P. ;
Bumann, Dirk ;
Camilli, Andrew ;
Collins, James J. ;
Dehio, Christoph ;
Fortune, Sarah ;
Ghigo, Jean-Marc ;
Hardt, Wolf-Dietrich ;
Harms, Alexander ;
Heinemann, Matthias ;
Hung, Deborah T. ;
Jenal, Urs ;
Levin, Bruce R. ;
Michiels, Jan ;
Storz, Gisela ;
Tan, Man-Wah ;
Tenson, Tanel ;
Van Melderen, Laurence ;
Zinkernagel, Annelies .
NATURE REVIEWS MICROBIOLOGY, 2019, 17 (07) :441-448
[5]   A problem of persistence: still more questions than answers? [J].
Balaban, Nathalie Q. ;
Gerdes, Kenn ;
Lewis, Kim ;
McKinney, John D. .
NATURE REVIEWS MICROBIOLOGY, 2013, 11 (08) :587-591
[6]   Bacterial persistence as a phenotypic switch [J].
Balaban, NQ ;
Merrin, J ;
Chait, R ;
Kowalik, L ;
Leibler, S .
SCIENCE, 2004, 305 (5690) :1622-1625
[7]   Constraints-based analysis identifies NAD+ recycling through metabolic reprogramming in antibiotic resistant Chromobacterium violaceum [J].
Banerjee, Deepanwita ;
Raghunathan, Anu .
PLOS ONE, 2019, 14 (01)
[8]   Proximate and ultimate causes of the bactericidal action of antibiotics [J].
Baquero, Fernando ;
Levin, Bruce R. .
NATURE REVIEWS MICROBIOLOGY, 2021, 19 (02) :123-132
[9]   Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis [J].
Bartell, Jennifer A. ;
Blazier, Anna S. ;
Yen, Phillip ;
Thogersen, Juliane C. ;
Jelsbak, Lars ;
Goldberg, Joanna B. ;
Papin, Jason A. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage [J].
Belenky, Peter ;
Ye, Jonathan D. ;
Porter, Caroline B. M. ;
Cohen, Nadia R. ;
Lobritz, Michael A. ;
Ferrante, Thomas ;
Jain, Saloni ;
Korry, Benjamin J. ;
Schwarz, Eric G. ;
Walker, Graham C. ;
Collins, James J. .
CELL REPORTS, 2015, 13 (05) :968-980