The framing of time-dependent machine learning models improves risk estimation among young individuals with acute coronary syndromes

被引:4
作者
de Carvalho, Luiz Sergio Fernandes [1 ,2 ,3 ,4 ,5 ]
Alexim, Gustavo [4 ,5 ]
Nogueira, Ana Claudia Cavalcante [1 ,2 ,4 ,5 ]
Fernandez, Marta Duran [3 ,6 ]
Rezende, Tito Barbosa [3 ,7 ]
Avila, Sandra [7 ]
Reis, Ricardo Torres Bispo [3 ,8 ]
Soares, Alexandre Anderson Munhoz [2 ,4 ]
Sposito, Andrei Carvalho [2 ,3 ,9 ]
机构
[1] Univ Catolica Brasilia, Lab Data Qual Care & Outcomes Res LaDa QCOR, BR-71966700 Brasilia, DF, Brazil
[2] Aramari Apo Inst Educ & Clin Res, Brasilia, DF, Brazil
[3] Clar Healthcare Intelligence, Jundiai, SP, Brazil
[4] Univ Brasilia, Fac Med, Brasilia, DF, Brazil
[5] Escola Super Ciencias Saude, Brasilia, DF, Brazil
[6] State Univ Campinas UNICAMP, Fac Elect Engn & Computat, Campinas, SP, Brazil
[7] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
[8] Univ Brasilia, Dept Stat, Brasilia, DF, Brazil
[9] Univ Estadual Campinas, Cardiol Dept, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
ACUTE MYOCARDIAL-INFARCTION; IMBALANCED DATA; CLOPIDOGREL; MORTALITY;
D O I
10.1038/s41598-023-27776-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acute coronary syndrome (ACS) is a common cause of death in individuals older than 55 years. Although younger individuals are less frequently seen with ACS, this clinical event has increasing incidence trends, shows high recurrence rates and triggers considerable economic burden. Young individuals with ACS (yACS) are usually underrepresented and show idiosyncratic epidemiologic features compared to older subjects. These differences may justify why available risk prediction models usually penalize yACS with higher false positive rates compared to older subjects. We hypothesized that exploring temporal framing structures such as prediction time, observation windows and subgroup-specific prediction, could improve time-dependent prediction metrics. Among individuals who have experienced ACS (n(global_cohort) = 6341 and n(yACS) = 2242), the predictive accuracy for adverse clinical events was optimized by using specific rules for yACS and splitting short-term and long-term prediction windows, leading to the detection of 80% of events, compared to 69% by using a rule designed for the global cohort.
引用
收藏
页数:14
相关论文
共 42 条
[1]  
Alaa AM, 2017, ADV NEUR IN, V30
[2]   Clinical and economic impact of coronary artery bypass graft and percutaneous coronary intervention in young individuals with acute coronary syndromes and multivessel disease: A real-world comparison in a middle-income country [J].
Alexim, Gustavo de Almeida ;
Rocha, Luiza Ferreira ;
Dobri, Giovani Prediger ;
Rosa Jr, Adair da Silva ;
Reis, Ricardo Torres Bispo ;
Nogueira, Ana Claudia Cavalcante ;
Soares, Alexandre Anderson de Souza Munhoz ;
Sposito, Andrei Carvalho ;
de Paula, Ana Patricia ;
de Carvalho, Luiz Sergio Fernandes .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[3]   A time-dependent discrimination index for survival data [J].
Antolini, L ;
Boracchi, P ;
Biganzoli, E .
STATISTICS IN MEDICINE, 2005, 24 (24) :3927-3944
[4]  
Arik S. O., 2020, Tabnet: Attentive interpretable tabular learning
[5]   Twenty Year Trends and Sex Differences in Young Adults Hospitalized With Acute Myocardial Infarction The ARIC Community Surveillance Study [J].
Arora, Sameer ;
Stouffer, George A. ;
Kucharska-Newton, Anna M. ;
Qamar, Arman ;
Vaduganathan, Muthiah ;
Pandey, Ambarish ;
Porterfield, Deborah ;
Blankstein, Ron ;
Rosamond, Wayne D. ;
Bhatt, Deepak L. ;
Caughey, Melissa C. .
CIRCULATION, 2019, 139 (08) :1047-1056
[6]  
Atiq R., 2022, Int. J. Inform. Technol. Comput. Sci., V14, P15
[7]   Introduction to the Analysis of Survival Data in the Presence of Competing Risks [J].
Austin, Peter C. ;
Lee, Douglas S. ;
Fine, Jason P. .
CIRCULATION, 2016, 133 (06) :601-609
[8]  
Belsley D.A., 2013, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, V2nd
[9]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[10]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794