The rice LATE ELONGATED HYPOCOTYL enhances salt tolerance by regulating Na+/K+ homeostasis and ABA signalling

被引:5
|
作者
Li, Chao [1 ,2 ]
He, Yi-Qin [1 ,3 ,4 ]
Yu, Jie [1 ,3 ,4 ]
Kong, Jia-Rui [1 ]
Ruan, Cheng-Cheng [1 ]
Yang, Zhen-Kun [1 ,3 ,4 ]
Zhuang, Jun-Jie [1 ]
Wang, Yu-Xiao [1 ,3 ,4 ]
Xu, Jian-Hong [1 ,2 ,3 ,4 ,5 ]
机构
[1] Zhejiang Univ, Coll Agr & Biotechnol, Dept Agron, Hangzhou, Peoples R China
[2] Zhejiang Univ, Shandong Linyi Inst Modern Agr, Linyi, Shandong, Peoples R China
[3] Zhejiang Univ, Hainan Inst, Sanya, Peoples R China
[4] Yazhou Bay Sci & Technol City, Yazhou Bay Seed Lab, Sanya, Peoples R China
[5] Zhejiang Univ, Coll Agr & Biotechnol, Dept Agron, 866 Yuhangtang Rd, Hangzhou 310058, Zhejiang, Peoples R China
来源
PLANT CELL AND ENVIRONMENT | 2024年 / 47卷 / 05期
关键词
abscisic acid pathway; ion homeostasis; OsLHY; salt stress; HKT TRANSPORTERS; DROUGHT TOLERANCE; SEED-GERMINATION; STRESS; GENE; TRANSDUCTION; EXPRESSION; CRISPR/CAS9; EFFICIENCY; RESPONSES;
D O I
10.1111/pce.14835
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The circadian clock plays multiple functions in the regulation of plant growth, development and response to various abiotic stress. Here, we showed that the core oscillator component late elongated hypocotyl (LHY) was involved in rice response to salt stress. The mutations of OsLHY gene led to reduced salt tolerance in rice. Transcriptomic analyses revealed that the OsLHY gene regulates the expression of genes related to ion homeostasis and the abscisic acid (ABA) signalling pathway, including genes encoded High-affinity K+ transporters (OsHKTs) and the stress-activated protein kinases (OsSAPKs). We demonstrated that OsLHY directly binds the promoters of OsHKT1;1, OsHKT1;4 and OsSAPK9 to regulate their expression. Moreover, the ossapk9 mutants exhibited salt tolerance under salt stress. Taken together, our findings revealed that OsLHY integrates ion homeostasis and the ABA pathway to regulate salt tolerance in rice, providing insights into our understanding of how the circadian clock controls rice response to salt stress.
引用
收藏
页码:1625 / 1639
页数:15
相关论文
共 50 条
  • [1] S-ABA Enhances Rice Salt Tolerance by Regulating Na+/K+ Balance and Hormone Homeostasis
    Jiang, Wenxin
    Wang, Xi
    Wang, Yaxin
    Du, Youwei
    Zhang, Shuyu
    Zhou, Hang
    Feng, Naijie
    Zheng, Dianfeng
    Ma, Guohui
    Zhao, Liming
    METABOLITES, 2024, 14 (04)
  • [2] Exogenous SA Affects Rice Seed Germination under Salt Stress by Regulating Na+/K+ Balance and Endogenous GAs and ABA Homeostasis
    Liu, Zhiguo
    Ma, Chunyang
    Hou, Lei
    Wu, Xiuzhe
    Wang, Dan
    Zhang, Li
    Liu, Peng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (06)
  • [3] OsPMS1 Mutation Enhances Salt Tolerance by Suppressing ROS Accumulation, Maintaining Na+/K+ Homeostasis, and Promoting ABA Biosynthesis
    Li, Wang-Qing
    Zheng, Wen-Jie
    Peng, Yan
    Shao, Ye
    Liu, Ci-Tao
    Li, Jin
    Hu, Yuan-Yi
    Zhao, Bing-Ran
    Mao, Bi-Gang
    GENES, 2023, 14 (08)
  • [4] Ectopic expression of CsTGase enhances salt tolerance by regulating polyamine biosynthesis, antioxidant activities and Na+/K+ homeostasis in transgenic tobacco
    Zhong, Min
    Wang, Yu
    Shu, Sheng
    Sun, Jin
    Guo, Shirong
    PLANT SCIENCE, 2020, 296
  • [5] OsCaM1-1 Is Responsible for Salt Tolerance by Regulating Na+/K+ Homoeostasis in Rice
    Wei, Siqi
    Chen, Mingjiong
    Wang, Fengyue
    Tu, Yishan
    Xu, Yunfeng
    Fu, Liangbo
    Zeng, Fanrong
    Zhang, Guoping
    Wu, Dezhi
    Shen, Qiufang
    PLANT CELL AND ENVIRONMENT, 2025, 48 (02): : 1393 - 1408
  • [6] A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana
    Wang, Jun-Ying
    Wang, Jun-Ping
    He-Yuan
    GENE, 2013, 521 (02) : 265 - 273
  • [7] Populus euphratica Phospholipase Dδ Increases Salt Tolerance by Regulating K+/Na+ and ROS Homeostasis in Arabidopsis
    Zhang, Ying
    Yao, Jun
    Yin, Kexin
    Liu, Zhe
    Zhang, Yanli
    Deng, Chen
    Liu, Jian
    Zhang, Yinan
    Hou, Siyuan
    Zhang, Huilong
    Yu, Dade
    Zhao, Nan
    Zhao, Rui
    Chen, Shaoliang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [8] Salt tolerance in rice in vitro:: Implication of accumulation of Na+, K+ and proline
    Basu, S
    Gangopadhyay, G
    Mukherjee, BB
    PLANT CELL TISSUE AND ORGAN CULTURE, 2002, 69 (01) : 55 - 64
  • [9] Salt tolerance in rice in vitro: Implication of accumulation of Na+, K+ and proline
    Sangita Basu
    Gaurab Gangopadhyay
    B.B. Mukherjee
    Plant Cell, Tissue and Organ Culture, 2002, 69 : 55 - 64
  • [10] Karrikinolide alleviates salt stress in wheat by regulating the redox and K+/Na+ homeostasis
    Shah, Faheem Afzal
    Ni, Jun
    Tang, Caiguo
    Chen, Xue
    Kan, Wenjie
    Wu, Lifang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 167 : 921 - 933