Photoluminescence Switching and Non-Volatile Memory in Hybrid Metal-Halide Phase-Change Materials

被引:10
|
作者
Wang, Wei [1 ,2 ]
Liu, Cheng-Dong [1 ,2 ]
Han, Xiang-Bin [1 ,2 ]
Jing, Chang-Qing [1 ,2 ]
Chai, Chao-Yang [1 ,2 ]
Fan, Chang-Chun [1 ,2 ]
Jin, Ming-Liang [1 ,2 ]
Zhang, Jing-Meng [1 ,2 ]
Zhang, Wen [1 ,2 ]
机构
[1] Southeast Univ, Jiangsu Key Lab Sci & Applicat Mol Ferroelect, Nanjing 211189, Peoples R China
[2] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Peoples R China
来源
ACS MATERIALS LETTERS | 2023年 / 6卷 / 01期
基金
中国国家自然科学基金;
关键词
TRANSITION; GLASS; LUMINESCENCE;
D O I
10.1021/acsmaterialslett.3c01296
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase-change materials (PCMs) have spurred intensive studies for information storage owing to huge and drastic changes in physical properties (i.e., optical and resistivity) during the phase transitions between crystalline-amorphous and crystalline-melting-glassy states. However, limited switching properties and materials greatly hinder their development and applications. Herein, we report a pair of hybrid metal halides (R/S-2-HMM)3SbCl6 (2-HMM = 2-(hydroxymethyl)-morpholine cation) as model compounds of a new class of photoluminescent PCMs. They undergo a stable melt process and become amorphous glass by melt-quenching. The crystalline phase exhibits near-unity yellow photoluminescence with a 95% quantum yield due to the radiative recombination of self-trapped excitons in the excited state of [SbCl6]3- octahedra. The glass phase exhibits an orange emission with a very low quantum yield and good transparency in the 400-800 nm range. Drastic photoluminescence switching via the crystal-glass transition is exploited for rewritable phase-change memory, as exemplified by a 4 x 4 array model device. The robust crystal-liquid-glass phase changes in hybrid metal halides and drastic photoluminescence switching open a new avenue to PCMs for further applications in remote information storage, sensing, and display.
引用
收藏
页码:203 / 211
页数:9
相关论文
共 50 条
  • [1] Emerging horizons in phase-change materials for non-volatile memory
    Chen, Yan
    Le, Yuqiao
    Chen, Lei
    Liu, Haisong
    Sun, Tangyou
    Liu, Xingpeng
    Zhang, Fabi
    Li, Haiou
    Hu, Xinxin
    Peng, Ying
    Liu, Chengyan
    Hong, Min
    MATERIALS TODAY ADVANCES, 2025, 25
  • [2] Phase-change materials for non-volatile photonic applications
    Wuttig M.
    Bhaskaran H.
    Taubner T.
    Nature Photonics, 2017, 11 (8) : 465 - 476
  • [3] Non-volatile phase-change materials for programmable photonics
    Fang, Zhuoran
    Chen, Rui
    Tara, Virat
    Majumdar, Arka
    SCIENCE BULLETIN, 2023, 68 (08) : 783 - 786
  • [4] PHASE-CHANGE MATERIALS FOR NON-VOLATILE DATA STORAGE
    Lencer, D.
    Wuttig, M.
    NANOSTRUCTURED MATERIALS FOR ADVANCED TECHNOLOGICAL APPLICATIONS, 2009, : 413 - 428
  • [5] Phase-change materials for non-volatile photonic applications
    Wuttig, M.
    Bhaskaran, H.
    Taubner, T.
    NATURE PHOTONICS, 2017, 11 (08) : 465 - 476
  • [6] Neuromorphic Photonic Memory Devices Using Ultrafast, Non-Volatile Phase-Change Materials
    Chen, Xiaozhang
    Xue, Yuan
    Sun, Yibo
    Shen, Jiabin
    Song, Sannian
    Zhu, Min
    Song, Zhitang
    Cheng, Zengguang
    Zhou, Peng
    ADVANCED MATERIALS, 2023, 35 (37)
  • [7] Simulation of phase-change processes in non-volatile memory cells
    Popov, A. I.
    Savinov, I. S.
    Voronkov, E. N.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) : 1624 - 1627
  • [8] Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues
    Noe, Pierre
    Vallee, Christophe
    Hippert, Francoise
    Fillot, Frederic
    Raty, Jean-Yves
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2018, 33 (01)
  • [9] Dielectric constants and endurance of chalcogenide phase-change non-volatile memory
    Savransky, Semyon D.
    Prokhorov, Eugenio F.
    CHALCOGENIDE ALLOYS FOR RECONFIGURABLE ELECTRONICS, 2006, 918 : 75 - +
  • [10] Non-Volatile Reconfigurable Silicon Photonics Based on Phase-Change Materials
    Fang, Zhuoran
    Chen, Rui
    Zheng, Jiajiu
    Majumdar, Arka
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (03)