Novel three-dimensional 90° bend waveguides with high optical transmission efficiency based on silicon-on-insulator

被引:0
作者
Li, Xiaoyu [1 ]
Yu, Shengtao [2 ]
Gui, Chengqun [1 ]
Sun, Chengliang [1 ]
机构
[1] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Bend waveguide; Three-dimensional (3D); Optical transmission efficiency; Silicon -on -insulator (SOI); Integrated optics; DESIGN; CROSSTALK; LIGHT;
D O I
10.1016/j.photonics.2023.101181
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bend waveguide is an indispensable device in photonics integrated circuits (PICs). In this work, we propose and design two novel 3D 90 degrees bend waveguides based on the silicon platform with asymmetrically semicircular and trapezoidal cross-sections. Strip bend waveguides with bending radii of 10/20 mu m and cross-sectional size of 4 x 3.5/5 x 3.5 mu m2 are used for comparison. The high optical transmission efficiency of the two novel 3D bend waveguides is validated by simulated data. The bent structures are manufactured on the device layer of silicon -on-insulator (SOI) using 3D grayscale lithography. The fiber-to-chip measured results indicate that at 1550 nm and TE/TM mode, the transmission efficiencies of the asymmetrically semicircular and trapezoidal bend waveguides with bending radii of 20 mu m and cross-sectional widths of 4 mu m are 1.91/1.66 dB and 1.36/1.15 dB higher than those of the strip bend waveguides. When the cross-sectional width is 5 mu m, the two novel 3D bend waveguides are 1.99/1.72 dB and 1.46/0.98 dB higher than those of the strip bend waveguides. The 3D bend waveguides can effectively reduce the insertion loss. This research suits for the realization of highly integrated photonics computing chips.
引用
收藏
页数:11
相关论文
共 32 条
  • [1] Universal Design of Waveguide Bends in Silicon-on-Insulator Photonics Platform
    Bahadori, Meisam
    Nikdast, Mahdi
    Cheng, Qixiang
    Bergman, Keren
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (13) : 3044 - 3054
  • [2] A general design algorithm for low optical loss adiabatic connections in waveguides
    Chen, Tong
    Lee, Hansuek
    Li, Jiang
    Vahala, Kerry J.
    [J]. OPTICS EXPRESS, 2012, 20 (20): : 22819 - 22829
  • [3] Chen Y., 2005, Chin. J. Semicond., V6, P216
  • [4] Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform
    Cherchi, Matteo
    Ylinen, Sami
    Harjanne, Mikko
    Kapulainen, Markku
    Aalto, Timo
    [J]. OPTICS EXPRESS, 2013, 21 (15): : 17814 - 17823
  • [5] Chrostowski L, 2015, SILICON PHOTONICS DESIGN, P1
  • [6] Subwavelength Silica-Based Optical Waveguide With a Multilayered Buffer for Sharp Bending
    Dai, Daoxin
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (13) : 2489 - 2494
  • [7] Parallel convolutional processing using an integrated photonic tensor core
    Feldmann, J.
    Youngblood, N.
    Karpov, M.
    Gehring, H.
    Li, X.
    Stappers, M.
    Le Gallo, M.
    Fu, X.
    Lukashchuk, A.
    Raja, A. S.
    Liu, J.
    Wright, C. D.
    Sebastian, A.
    Kippenberg, T. J.
    Pernice, W. H. P.
    Bhaskaran, H.
    [J]. NATURE, 2021, 589 (7840) : 52 - +
  • [8] Low-loss, compact, and fabrication-tolerant Si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits
    Fujisawa, Takeshi
    Makino, Shuntaro
    Sato, Takanori
    Saitoh, Kunimasa
    [J]. OPTICS EXPRESS, 2017, 25 (08): : 9150 - 9159
  • [9] On-chip transformation optics for multimode waveguide bends
    Gabrielli, Lucas H.
    Liu, David
    Johnson, Steven G.
    Lipson, Michal
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [10] Guiding light in bent waveguide superlattices with low crosstalk
    Gatdula, Robert
    Abbaslou, Siamak
    Lu, Ming
    Stein, Aaron
    Jiang, Wei
    [J]. OPTICA, 2019, 6 (05): : 585 - 591