Homogenization in perforated domains at the critical scale

被引:0
作者
Brusca, Giuseppe Cosma [1 ]
机构
[1] Sissa, Via Bonomea 265, Trieste, Italy
关键词
Capacity; Homogenization; Gamma-convergence; Perforated domains; ASYMPTOTIC ANALYSIS;
D O I
10.1016/j.na.2023.113436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the asymptotic behaviour of the minimal heterogeneous d-capacity of a small set, which we assume to be a ball for simplicity, in a fixed bounded open set Omega subset of R-d, with d >= 2. Two parameters are involved: epsilon, the radius of the ball, and delta, the length scale of the heterogeneity of the medium. We prove that this capacity behaves as C vertical bar log epsilon vertical bar(1-d), where C = C(lambda) is an explicit constant depending on the parameter lambda := lim(epsilon -> 0) vertical bar log delta vertical bar/vertical bar log epsilon vertical bar. We determine the Gamma-limit of oscillating integral functionals subjected to Dirichlet boundary conditions on periodically perforated domains. Our first result is used to study the behaviour of the functionals near the perforations which, in this instance, are balls of radius epsilon. We prove that an additional strange term arises involving C(lambda).
引用
收藏
页数:26
相关论文
共 17 条
  • [1] Asymptotic analysis of periodically-perforated nonlinear media
    Ansini, N
    Braides, A
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (05): : 439 - 451
  • [2] Separation of scales and almost-periodic effects in the asymptotic behaviour of perforated periodic media
    Ansini, N
    Braides, A
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) : 59 - 81
  • [3] Blanc X., 2022, Ou Non: Une Introduction
  • [4] Braides A., 2022, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat.
  • [5] BRAIDES A., 2002, Gamma-Convergence for Beginners, V22
  • [6] Braides Andrea., 1998, Homogenization of Multiple Integrals
  • [7] The limit of Dirichlet systems for variable monotone operators in general perforated domains
    Calvo-Jurado, C
    Casado-Díaz, J
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (05): : 471 - 493
  • [8] Cioranescu D., 2018, Series in Contemporary Mathematics, V3
  • [9] Cioranescu D., 1994, Res. Notes in Math., P154
  • [10] A generalized strange term in Signorini's type problems
    Conca, C
    Murat, F
    Timofte, C
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (05): : 773 - 805