3D printed macroporous scaffolds of PCL and inulin-g-P(D,L)LA for bone tissue engineering applications

被引:11
作者
Tommasino, Carmela [1 ,2 ]
Auriemma, Giulia [1 ,5 ]
Sardo, Carla [1 ]
Alvarez-Lorenzo, Carmen [3 ]
Garofalo, Emilia [4 ]
Morello, Silvana [1 ]
Falcone, Giovanni [1 ]
Aquino, Rita P. [1 ]
机构
[1] Univ Salerno, Dept Pharm, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[2] Univ Salerno, PhD Program Drug Discovery & Dev, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
[3] Univ Santiago De Compostela, Hlth Res Inst Santiago De Compostela IDIS, Fac Farm, I D Farma GI 1645,Inst Mat IMATUS,Dept Farmacol Fa, Santiago De Compostela 15782, Spain
[4] Univ Salerno, Dept Ind Engn, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[5] Univ Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
关键词
Inulin-g-poly(D; L)lactide; Poly( & epsilon; -caprolactone); Hybrid biodegradable material; Fused filament fabrication; 3D printing; Hybrid 3D printed scaffolds; Bone tissue engineering; POLYCAPROLACTONE SCAFFOLDS; MECHANICAL-PROPERTIES; IN-VITRO; MICROSTRUCTURAL PROPERTIES; DEGRADATION; FABRICATION; INULIN; REGENERATION; ENHANCE; DESIGN;
D O I
10.1016/j.ijpharm.2023.123093
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Bone repair and tissue-engineering (BTE) approaches require novel biomaterials to produce scaffolds with required structural and biological characteristics and enhanced performances with respect to those currently available. In this study, PCL/INU-PLA hybrid biomaterial was prepared by blending of the aliphatic polyester poly(e-caprolactone) (PCL) with the amphiphilic graft copolymer Inulin-g-poly(D,L)lactide (INU-PLA) synthetized from biodegradable inulin (INU) and poly(lactic acid) (PLA). The hybrid material was suitable to be processed using fused filament fabrication 3D printing (FFF-3DP) technique rendering macroporous scaffolds. PCL and INU-PLA were firstly blended as thin films through solvent-casting method, and then extruded by hot melt extrusion (HME) in form of filaments processable by FFF-3DP. The physicochemical characterization of the hybrid new material showed high homogeneity, improved surface wettability/hydrophilicity as compared to PCL alone, and right thermal properties for FFF process. The 3D printed scaffolds exhibited dimensional and structural parameters very close to those of the digital model, and mechanical performances compatible with the human trabecular bone. In addition, in comparison to PCL, hybrid scaffolds showed an enhancement of surface properties, swelling ability, and in vitro biodegradation rate. In vitro biocompatibility screening through hemolysis assay, LDH cytotoxicity test on human fibroblasts, CCK-8 cell viability, and osteogenic activity (ALP evaluation) assays on human mesenchymal stem cells showed favorable results.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Development of 3D-Printed PCL/ Baghdadite Nanocomposite Scaffolds for Bone Tissue Engineering Applications
    Emadi, Hosein
    Baghani, Mostafa
    Khodaei, Mohammad
    Baniassadi, Majid
    Tavangarian, Fariborz
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2024, 32 (08) : 3668 - 3686
  • [2] 3D printing of PCL-ceramic composite scaffolds for bone tissue engineering applications
    Parupelli, Santosh Kumar
    Saudi, Sheikh
    Bhattarai, Narayan
    Desai, Salil
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (06) : 539 - 551
  • [3] Applications of 3D printed bone tissue engineering scaffolds in the stem cell field
    Su, Xin
    Wang, Ting
    Guo, Shu
    REGENERATIVE THERAPY, 2021, 16 : 63 - 72
  • [4] 3D printed porous polycaprolactone/oyster shell powder (PCL/OSP) scaffolds for bone tissue engineering
    Luo, Wenfeng
    Zhang, Shuangying
    Lan, Yuewei
    Huang, Chen
    Wang, Chao
    Lai, Xuexu
    Chen, Hanwei
    Ao, Ningjian
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04)
  • [5] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [6] On 3D printed scaffolds for orthopedic tissue engineering applications
    Ranjan, Nishant
    Singh, Rupinder
    Ahuja, I. P. S.
    Kumar, Ranvijay
    Singh, Jatenderpal
    Verma, Anita K.
    Leekha, Ankita
    SN APPLIED SCIENCES, 2020, 2 (02):
  • [7] 3D printed porous ceramic scaffolds for bone tissue engineering: a review
    Yu Wen
    Sun Xun
    Meng Haoye
    Sun Baichuan
    Chen Peng
    Liu Xuejian
    Zhang Kaihong
    Yang Xuan
    Peng Jiang
    Lu Shibi
    BIOMATERIALS SCIENCE, 2017, 5 (09) : 1690 - 1698
  • [8] Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
    Tarafder, Solaiman
    Balla, Vamsi Krishna
    Davies, Neal M.
    Bandyopadhyay, Amit
    Bose, Susmita
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2013, 7 (08) : 631 - 641
  • [9] 3D printed scaffolds with random microarchitecture for bone tissue engineering applications: Manufacturing and characterization
    Pecci, Raffaella
    Baiguera, Silvia
    Ioppolo, Pietro
    Bedini, Rossella
    Del Gaudio, Costantino
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 103 (103)
  • [10] 3D Printing of Polyester Scaffolds for Bone Tissue Engineering: Advancements and Challenges
    Salehabadi, Mojtaba
    Mirzadeh, Hamid
    ADVANCED MATERIALS TECHNOLOGIES, 2024,