Planar AlN/GaN resonant tunneling diodes fabricated using nitrogen ion implantation

被引:4
作者
Zhang, Baoqing [1 ]
Yang, Liuyun [1 ]
Wang, Ding [1 ]
Cheng, Kai [2 ]
Sheng, Bowen [1 ]
Liang, Zhiwen [3 ]
Yuan, Ye [4 ]
Shen, Bo [1 ]
Wang, Xinqiang [1 ,3 ,4 ]
机构
[1] Peking Univ, Ctr Nanooptoelect, Sch Phys, State Key Lab Mesoscop Phys & Frontiers Sci, Beijing 100871, Peoples R China
[2] Enkris Semicond Inc, Suzhou 215123, Peoples R China
[3] Peking Univ, Dongguan Inst Optoelect, Dongguan 523808, Guangdong, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
GAN; OSCILLATIONS; PERFORMANCE; GHZ;
D O I
10.1063/5.0133718
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report planar AlN/GaN resonant tunneling diodes (RTDs) fabricated using a nitrogen ion implantation isolation process on silicon substrates. The active area of AlN/GaN RTDs is defined by nitrogen ion implantation. A planar RTD consists of two different-sized RTDs connected in series, where the larger one acts as a resistor and the performance of the planar RTD is determined by the smaller one. Repeatable and hysteresis-free negative differential resistances without degradation are observed through 500 continuous bidirectional voltage sweeps. The peak current density is 15.5 kA/cm(2). The RTD exhibits stable negative differential resistance (NDR), with the peak-to-valley current ratio varying from 1.39 to 1.28 as the temperature increases from 77 to 295 K. This practicable and reproducible ion implantation process is compatible with silicon fabrication technology. It, thus, provides a feasible method for device design of GaN-based RTDs and facilitates the implementation of complex monolithic microwave integrated circuits based on planar III-nitride RTDs on large-size silicon wafers.
引用
收藏
页数:6
相关论文
共 54 条
[1]   Reliability in room-temperature negative differential resistance characteristics of low-aluminum content AlGaN/GaN double-barrier resonant tunneling diodes [J].
Bayram, C. ;
Vashaei, Z. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2010, 97 (18)
[2]   Room temperature negative differential resistance characteristics of polar III-nitride resonant tunneling diodes [J].
Bayram, C. ;
Vashaei, Z. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2010, 97 (09)
[3]   AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition [J].
Bayram, C. ;
Vashaei, Z. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2010, 96 (04)
[4]   Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures [J].
Bellotti, Enrico ;
Driscoll, Kristina ;
Moustakas, Theodore D. ;
Paiella, Roberto .
APPLIED PHYSICS LETTERS, 2008, 92 (10)
[5]   Doping properties of C, Si, and Ge impurities in GaN and AlN [J].
Boguslawski, P ;
Bernholc, J .
PHYSICAL REVIEW B, 1997, 56 (15) :9496-9505
[6]   Thermoelectrically cooled THz quantum cascade laser operating up to 210K [J].
Bosco, L. ;
Franckie, M. ;
Scalari, G. ;
Beck, M. ;
Wacker, A. ;
Faist, J. .
APPLIED PHYSICS LETTERS, 2019, 115 (01)
[7]   OSCILLATIONS UP TO 420 GHZ IN GAAS/ALAS RESONANT TUNNELING DIODES [J].
BROWN, ER ;
SOLLNER, TCLG ;
PARKER, CD ;
GOODHUE, WD ;
CHEN, CL .
APPLIED PHYSICS LETTERS, 1989, 55 (17) :1777-1779
[8]   OSCILLATIONS UP TO 712 GHZ IN INAS/ALSB RESONANT-TUNNELING DIODES [J].
BROWN, ER ;
SODERSTROM, JR ;
PARKER, CD ;
MAHONEY, LJ ;
MOLVAR, KM ;
MCGILL, TC .
APPLIED PHYSICS LETTERS, 1991, 58 (20) :2291-2293
[9]   New self-aligned planar resonant-tunneling diodes for monolithic circuits [J].
Chen, CL ;
Mathews, RH ;
Mahoney, LJ ;
Maki, PA ;
Molvar, KM ;
Sage, JP ;
Fitch, GL ;
Sollner, TCLG .
IEEE ELECTRON DEVICE LETTERS, 1997, 18 (10) :489-491
[10]   Dominant Influence of Interface Roughness Scattering on the Performance of GaN Terahertz Quantum Cascade Lasers [J].
Cheng, Junyan ;
Quach, Patrick ;
Wang, Ding ;
Liu, Fang ;
Liu, Shangfeng ;
Yang, Liuyun ;
Liu, Huapeng ;
Shen, Bo ;
Tong, Yuzhen ;
Wang, Xinqiang .
NANOSCALE RESEARCH LETTERS, 2019, 14 (1)