Lightweight image super-resolution based on stepwise feedback mechanism and multi-feature maps fusion

被引:1
|
作者
Yao, Xu [1 ]
Chen, Houjin [1 ]
Li, Yanfeng [1 ]
Sun, Jia [1 ]
Wei, Jiayu [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100091, Peoples R China
基金
北京市自然科学基金; 美国国家科学基金会;
关键词
Super-resolution; Lightweight; Multi-feature maps reconstruction; Feedback mechanism; NETWORKS;
D O I
10.1007/s00530-023-01242-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, deep learning has made remarkable breakthroughs in single-image super-resolution (SISR). However, the improvements often come with the increased network size, which is impractical for resource-constrained mobile devices. To alleviate this problem, an SISR method based on stepwise feedback training and multi-feature maps fusion (SFTMFM) is proposed in this paper, with fewer parameters amidst improved performance. Specifically, to better balance the performance and model parameters, a symmetrical CNN (SCNN) based on parameter sharing is constructed. In addition, to make up the deficiency of CNN module, the Swin Transformer layer (STL) is adopted to extract similar features over long distances. Lastly, to further improve the reconstruction ability of the model, a stepwise feedback training strategy is designed, which combines the cross-feature maps attention module as a feedback mechanism with the multi-feature maps fusion module to gradually reconstruct the model with higher-quality images. Under x 2 upscaling, our method achieves the PSNR(dB) of 38.10, 33.69, 32.25, 32.33, and 39.00 for SET5, SET14, BSD100, Urban100, and Managa109 datasets. Compared with the state-of-the-art lightweight SISR methods, our method shows better reconstruction performance and less computational cost.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] MFFN: Multi-path feedback fusion network for lightweight image super resolution
    Xue, Lixia
    Shen, Junhui
    Wang, Ronggui
    Yang, Juan
    IET IMAGE PROCESSING, 2023, 17 (14) : 4190 - 4201
  • [32] AFBNet: A Lightweight Adaptive Feature Fusion Module for Super-Resolution Algorithms
    Yin, Lirong
    Wang, Lei
    Lu, Siyu
    Wang, Ruiyang
    Ren, Haitao
    AlSanad, Ahmed
    AlQahtani, Salman A.
    Yin, Zhengtong
    Li, Xiaolu
    Zheng, Wenfeng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (03): : 2315 - 2347
  • [33] Super-Resolution Ultrasound Through Sparsity-Based Deconvolution and Multi-Feature Tracking
    Yan, Jipeng
    Zhang, Tao
    Broughton-Venner, Jacob
    Huang, Pintong
    Tang, Meng-Xing
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (08) : 1938 - 1947
  • [34] Compressed multi-scale feature fusion network for single image super-resolution
    Fan, Xinxia
    Yang, Yanhua
    Deng, Cheng
    Xu, Jie
    Gao, Xinbo
    SIGNAL PROCESSING, 2018, 146 : 50 - 60
  • [35] PFAN: progressive feature aggregation network for lightweight image super-resolution
    Chen, Liqiong
    Yang, Xiangkun
    Wang, Shu
    Shen, Ying
    Wu, Jing
    Huang, Feng
    Qiu, Zhaobing
    VISUAL COMPUTER, 2025,
  • [36] Lightweight Remote-Sensing Image Super-Resolution via Attention-Based Multilevel Feature Fusion Network
    Wang, Hongyuan
    Cheng, Shuli
    Li, Yongming
    Du, Anyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 15
  • [37] Image Super-Resolution via Lightweight Attention-Directed Feature Aggregation Network
    Wang, Li
    Li, Ke
    Tang, Jingjing
    Liang, Yuying
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)
  • [38] LMSN:a lightweight multi-scale network for single image super-resolution
    Zou, Yiye
    Yang, Xiaomin
    Albertini, Marcelo Keese
    Hussain, Farhan
    MULTIMEDIA SYSTEMS, 2021, 27 (04) : 845 - 856
  • [39] Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
    Zhang, Min
    Wang, Huibin
    Zhang, Zhen
    Chen, Zhe
    Shen, Jie
    MICROMACHINES, 2022, 13 (01)
  • [40] Lightweight frequency-based attention network for image super-resolution
    Tang, E.
    Wang, Li
    Wang, Yuanyuan
    Yu, Yongtao
    Zeng, Xiaoqin
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (05)