An enhanced gradient-tracking bound for distributed online stochastic convex optimization

被引:3
作者
Alghunaim, Sulaiman A. [1 ]
Yuan, Kun [2 ]
机构
[1] Kuwait Univ, Dept Elect Engn, Kuwait, Kuwait
[2] Peking Univ, Ctr Machine Learning Res, Beijing, Peoples R China
关键词
Distributed stochastic optimization; Decentralized learning; Gradient-tracking; Adapt-then-combine; LINEAR CONVERGENCE; ALGORITHMS;
D O I
10.1016/j.sigpro.2023.109345
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gradient-tracking (GT) based decentralized methods have emerged as an effective and viable alternative method to decentralized (stochastic) gradient descent (DSGD) when solving distributed online stochastic optimization problems. Initial studies of GT methods implied that GT methods have worse network dependent rate than DSGD, contradicting experimental results. This dilemma has recently been resolved, and tighter rates for GT methods have been established, which improves upon DSGD.In this work, we establish more enhanced rates for GT methods under the online stochastic convex settings. We present an alternative approach for analyzing GT methods for convex problems and over static graphs. When compared to previous analyses, this approach allows us to establish enhanced network dependent rates.
引用
收藏
页数:9
相关论文
共 32 条
  • [1] Decentralized Proximal Gradient Algorithms With Linear Convergence Rates
    Alghunaim, Sulaiman A.
    Ryu, Ernest K.
    Yuan, Kun
    Sayed, Ali H.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (06) : 2787 - 2794
  • [2] A Unified and Refined Convergence Analysis for Non-Convex Decentralized Learning
    Alghunaim, Sulaiman A.
    Yuan, Kun
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3264 - 3279
  • [3] Diffusion LMS Strategies for Distributed Estimation
    Cattivelli, Federico S.
    Sayed, Ali H.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1035 - 1048
  • [4] SECOND-ORDER GUARANTEES OF DISTRIBUTED GRADIENT ALGORITHMS
    Daneshmand, Amir
    Scutari, Gesualdo
    Kungurtsev, Vyacheslav
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) : 3029 - 3068
  • [5] NEXT: In-Network Nonconvex Optimization
    Di Lorenzo, Paolo
    Scutari, Gesualdo
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2016, 2 (02): : 120 - 136
  • [6] Koloskova A, 2020, PR MACH LEARN RES, V119
  • [7] Koloskova T., 2021, Advances in Neural Information Processing Systems, P11422
  • [8] Li BY, 2020, J MACH LEARN RES, V21
  • [9] Diffusion least-mean squares over adaptive networks: Formulation and performance analysis
    Lopes, Cassio G.
    Sayed, Ali H.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) : 3122 - 3136
  • [10] Lu ST, 2019, 2019 IEEE DATA SCIENCE WORKSHOP (DSW), P315, DOI [10.1109/dsw.2019.8755807, 10.1109/DSW.2019.8755807]