A parsimonious ensemble with optimal deep learning and secondary decomposition for short-term wind speed forecasting

被引:0
|
作者
Xia, Wenxin [1 ,2 ]
Che, Jinxing [1 ,2 ]
机构
[1] Nanchang Inst Technol, Sch Sci, Nanchang 330099, Jiangxi, Peoples R China
[2] Nanchang Inst Technol, Jiangxi Prov Key Lab Water Informat Cooperat Sen, Nanchang, Peoples R China
基金
中国国家自然科学基金;
关键词
Parsimonious ensemble; secondary decomposition; optimal deep learning; crow search algorithm; HYBRID; ALGORITHM; MODEL; OPTIMIZATION; MULTISTEP; CEEMDAN;
D O I
10.3233/JIFS-233782
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wind energy needs to be used efficiently, which depends heavily on the accuracy and reliability of wind speed forecasting. However, the volatility and nonlinearity of wind speed make this difficult. In volatility and nonlinearity reduction, we sequentially apply complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) to secondarily decompose the wind speed data. This framework, however, requires effectively modeling multiple uncertainty components. Eliminating this limitation, we integrate crow search algorithm (CSA) with deep belief network (DBN) to generate a unified optimal deep learning system, which not only eliminates the influence of multiple uncertainties, but also only adopts DBN as a predictor to realize parsimonious ensemble. Two experiments demonstrate the superiority of this system.
引用
收藏
页码:10799 / 10822
页数:24
相关论文
共 50 条
  • [1] Short-Term Wind Speed Forecasting Using Ensemble Learning
    Karthikeyan, M.
    Rengaraj, R.
    2021 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES), 2021, : 502 - 506
  • [2] A novel deep learning ensemble model with data denoising for short-term wind speed forecasting
    Peng, Zhiyun
    Peng, Sui
    Fu, Lidan
    Lu, Binchun
    Tang, Junjie
    Wang, Ke
    Li, Wenyuan
    ENERGY CONVERSION AND MANAGEMENT, 2020, 207
  • [3] A hybrid forecasting model for very short-term wind speed prediction based on secondary decomposition and deep learning algorithms
    Keke Ma
    Wenyu Zhang
    Zhenhai Guo
    Jing Zhao
    Wenzhi Qiu
    Earth Science Informatics, 2023, 16 : 2421 - 2438
  • [4] A hybrid forecasting model for very short-term wind speed prediction based on secondary decomposition and deep learning algorithms
    Ma, Keke
    Zhang, Wenyu
    Guo, Zhenhai
    Zhao, Jing
    Qiu, Wenzhi
    EARTH SCIENCE INFORMATICS, 2023, 16 (03) : 2421 - 2438
  • [5] Short-term wind speed forecasting approach using Ensemble Empirical Mode Decomposition and Deep Boltzmann Machine
    Santhosh, Madasthu
    Venkaiah, Chintham
    Kumar, D. M. Vinod
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2019, 19
  • [6] Decomposition-Selection-Ensemble Prediction System for Short-Term Wind Speed Forecasting
    Jiang, Ping
    Liu, Zhenkun
    Wang, Jianzhou
    Zhang, Lifang
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 211
  • [7] Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method
    Xiang, Ling
    Li, Jingxu
    Hu, Aijun
    Zhang, Yue
    ENERGY CONVERSION AND MANAGEMENT, 2020, 220
  • [8] Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting
    Tang, Zhenhao
    Zhao, Gengnan
    Wang, Gong
    Ouyang, Tinghui
    IEEE ACCESS, 2020, 8 (08): : 45271 - 45291
  • [9] A Short-Term Ensemble Wind Speed Forecasting System for Wind Power Applications
    Traiteur, Justin J.
    Callicutt, David J.
    Smith, Maxwell
    Roy, Somnath Baidya
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2012, 51 (10) : 1763 - 1774
  • [10] A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
    Liu, Hui
    Yu, Chengqing
    Wu, Haiping
    Duan, Zhu
    Yan, Guangxi
    ENERGY, 2020, 202