Stability and magnetic behavior of exfoliable nanowire one-dimensional materials

被引:4
作者
Paul, Joshua T. [1 ]
Lu, Janet [1 ]
Shah, Sohum [1 ]
Xie, Stephen R. [1 ]
Hennig, Richard G. [1 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
基金
美国能源部; 美国国家科学基金会;
关键词
QUANTUM DOTS; PHOSPHORENE; GRAPHENE; CELLS;
D O I
10.1103/PhysRevMaterials.7.076002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Low-dimensional materials can display enhanced electronic, magnetic, and quantum properties. We use the topological scaling algorithm to identify all sufficiently metastable materials in the Materials Project database to identify bulk crystals with one-dimensional (1D) structural motifs: Five hundred fifty-one crystals that are within 50 meV atom(-1) of the thermodynamic hull display 1D motifs, where 293 of these contain d-valence elements, which we focus on in this work. After exfoliating nanowires from 263 of these materials and calculating their thermodynamic stability using density functional theory, 103 nanowires meet per-atom and per-angstrom ngstrom thermodynamic stability criteria. We illustrate for three nanowire systems that a variety of local minima can be present in these systems, demonstrating one case of a Peierls distortion. The wires display a broad diversity of electronic and magnetic properties of these nanowires, with 14 metals, 7 half-metals, and 82 semiconductors and insulators, and 41 nanowires displaying magnetic moments ranging from 0.1 to 5 mu B per d-valence species when assuming ferromagnetic order. A subset of these chains are investigated for the impact of magnetic ordering, identifying 1D FeCl3 to be most stable in an antiferromagnetic state. The electronic and magnetic properties of the identified 1D materials could enable applications in spintronic and quantum devices.
引用
收藏
页数:10
相关论文
共 82 条
[41]   MPInterfaces: A Materials Project based Python']Python tool for high-throughput computational screening of interfacial systems [J].
Mathew, Kiran ;
Singh, Arunima K. ;
Gabriel, Joshua J. ;
Choudhary, Kamal ;
Sinnott, Susan B. ;
Davydov, Albert V. ;
Tavazza, Francesca ;
Hennig, Richard G. .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 122 :183-190
[42]   Single-Atom Scale Structural Selectivity in Te Nanowires Encapsulated Inside Ultranarrow, Single-Walled Carbon Nanotubes [J].
Medeiros, Paulo V. C. ;
Marks, Samuel ;
Wynn, Jamie M. ;
Vasylenko, Andrij ;
Ramasse, Quentin M. ;
Quigley, David ;
Sloan, Jeremy ;
Morris, Andrew J. .
ACS NANO, 2017, 11 (06) :6178-6185
[43]   ABSENCE OF FERROMAGNETISM OR ANTIFERROMAGNETISM IN ONE- OR 2-DIMENSIONAL ISOTROPIC HEISENBERG MODELS [J].
MERMIN, ND ;
WAGNER, H .
PHYSICAL REVIEW LETTERS, 1966, 17 (22) :1133-&
[44]   Quantum dots for live cells, in vivo imaging, and diagnostics [J].
Michalet, X ;
Pinaud, FF ;
Bentolila, LA ;
Tsay, JM ;
Doose, S ;
Li, JJ ;
Sundaresan, G ;
Wu, AM ;
Gambhir, SS ;
Weiss, S .
SCIENCE, 2005, 307 (5709) :538-544
[45]   An atlas of two-dimensional materials [J].
Miro, Pere ;
Audiffred, Martha ;
Heine, Thomas .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (18) :6537-6554
[46]   Dispersion interactions between semiconducting wires [J].
Misquitta, Alston J. ;
Spencer, James ;
Stone, Anthony J. ;
Alavi, Ali .
PHYSICAL REVIEW B, 2010, 82 (07)
[47]   Chiral hinge magnons in second-order topological magnon insulators [J].
Mook, Alexander ;
Diaz, Sebastian A. ;
Klinovaja, Jelena ;
Loss, Daniel .
PHYSICAL REVIEW B, 2021, 104 (02)
[48]   Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds [J].
Mounet, Nicolas ;
Gibertini, Marco ;
Schwaller, Philippe ;
Campi, Davide ;
Merkys, Andrius ;
Marrazzo, Antimo ;
Sohier, Thibault ;
Castelli, Ivano Eligio ;
Cepellotti, Andrea ;
Pizzi, Giovanni ;
Marzari, Nicola .
NATURE NANOTECHNOLOGY, 2018, 13 (03) :246-+
[49]   Increased activity in hydrogen evolution electrocatalysis for partial anionic substitution in cobalt oxysulfide nanoparticles [J].
Nelson, Andrew ;
Fritz, Kevin E. ;
Honrao, Shreyas ;
Hennig, Richard G. ;
Robinson, Richard D. ;
Suntivich, Jin .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (08) :2842-2848
[50]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669