3D CATBraTS: Channel Attention Transformer for Brain Tumour Semantic Segmentation

被引:1
作者
El Badaoui, Rim [1 ]
Coll, Bonmati [1 ]
Psarrou, Aleka [1 ]
Villarini, Barbara [1 ]
机构
[1] Univ Westminster, Sch Comp Sci & Engn, London, England
来源
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS | 2023年
关键词
CNN; Transformers; ViT; Semantic Segmentation;
D O I
10.1109/CBMS58004.2023.00267
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumour diagnosis is a challenging task yet crucial for planning treatments to stop or slow the growth of a tumour. In the last decade, there has been a dramatic increase in the use of convolutional neural networks (CNN) for their high performance in the automatic segmentation of tumours in medical images. More recently, Vision Transformer (ViT) has become a central focus of medical imaging for its robustness and efficiency when compared to CNNs. In this paper, we propose a novel 3D transformer named 3D CATBraTS for brain tumour semantic segmentation on magnetic resonance images (MRIs) based on the state-of-the-art Swin transformer with a modified CNN-encoder architecture using residual blocks and a channel attention module. The proposed approach is evaluated on the BraTS 2021 dataset and achieved quantitative measures of the mean Dice similarity coefficient (DSC) that surpasses the current state-of-the-art approaches in the validation phase.
引用
收藏
页码:489 / 494
页数:6
相关论文
共 30 条
[1]  
Baid U, 2021, Arxiv, DOI [arXiv:2107.02314, 10.48550/arXiv.2107.02314, DOI 10.48550/ARXIV.2107.02314]
[2]  
Bakas S, 2019, Arxiv, DOI [arXiv:1811.02629, 10.48550/arXiv.1811.02629, DOI 10.48550/ARXIV.1811.02629]
[3]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[4]   Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory and Practice [J].
Bertels, Jeroen ;
Eelbode, Tom ;
Berman, Maxim ;
Vandermeulen, Dirk ;
Maes, Frederik ;
Bisschops, Raf ;
Blaschko, Matthew B. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :92-100
[5]  
Cardoso M.J., 2022, arXiv
[6]  
Ye JC, 2019, Arxiv, DOI arXiv:1901.07647
[7]   Medical progress: Brain tumors [J].
DeAngelis, LM .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (02) :114-123
[8]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
[9]   Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians [J].
Grover, Vijay P. B. ;
Tognarelli, Joshua M. ;
Crossey, Mary M. E. ;
Cox, I. Jane ;
Taylor-Robinson, Simon D. ;
McPhail, Mark J. W. .
JOURNAL OF CLINICAL AND EXPERIMENTAL HEPATOLOGY, 2015, 5 (03) :246-255
[10]   Recent advances in convolutional neural networks [J].
Gu, Jiuxiang ;
Wang, Zhenhua ;
Kuen, Jason ;
Ma, Lianyang ;
Shahroudy, Amir ;
Shuai, Bing ;
Liu, Ting ;
Wang, Xingxing ;
Wang, Gang ;
Cai, Jianfei ;
Chen, Tsuhan .
PATTERN RECOGNITION, 2018, 77 :354-377