Constructing Electrocatalysts with Composition Gradient Distribution by Solubility Product Theory: Amorphous/Crystalline CoNiFe-LDH Hollow Nanocages

被引:50
作者
Wu, Jiashun [1 ]
Yang, Tong [1 ]
Fu, Rong [2 ]
Zhou, Min [3 ]
Xia, Lixue [3 ]
Wang, Zhaoyang [2 ,3 ]
Zhao, Yan [1 ,3 ,4 ]
机构
[1] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Hubei, Peoples R China
[2] Hubei Engn Univ, Sch Chem & Mat Sci, 272 Traff Ave, Xiaogan 432000, Hubei, Peoples R China
[3] Wuhan Univ Technol, Int Sch Mat Sci & Engn, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
[4] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
amorphous; crystalline phase; gradient distribution; layered doubled hydroxides; oxygen evolution reaction; solubility product constant; IN-SITU CONSTRUCTION; ACTIVE-SITES; WATER; CARBON;
D O I
10.1002/adfm.202300808
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition-metal based layered doubled hydroxides (LDH) as oxygen evolution reaction (OER) catalysts have attracted tremendous research interests. However, it is still a great challenge to strengthen the intrinsic activity of LDH. Herein, hollow CoNiFe-LDH nanocages with amorphous/crystal phase and element gradient distribution are successfully constructed through the coordinated etching and precipitation process. Utilizing the difference of solubility product constants among transition metal cations to generate the gradient distribution effect in nanocages is proposed for the first time. The distinctive element gradient distribution in hollow CoNiFe-LDH nanocages results in the composition gradient, which can provide the heterojunctions effect and play an important role in regulating morphology and electronic structure. Density functional theory calculations disclose that the synergistic effect between elements significantly regulates the electron density and enhances the conductivity. When employed as OER electrocatalysts, it exhibits a very competitive overpotential of 257 mV at 10 mA cm(-2) combined with a low Tafel slope of 31.4 mV dec(-1). This work represents a promising strategy to fabricate highly efficient OER catalysts for electrochemical water splitting and provides new opportunities to understand the promotion mechanism of intrinsic activity.
引用
收藏
页数:11
相关论文
共 55 条
[1]   The Pitfalls of Using Potentiodynamic Polarization Curves for Tafel Analysis in Electrocatalytic Water Splitting [J].
Anantharaj, Sengeni ;
Noda, Suguru ;
Driess, Matthias ;
Menezes, Prashanth W. .
ACS ENERGY LETTERS, 2021, 6 (04) :1607-1611
[2]   "The Fe Effect": A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts [J].
Anantharaj, Sengeni ;
Kundu, Subrata ;
Noda, Suguru .
NANO ENERGY, 2021, 80
[3]   MECHANISM OF OXYGEN EVOLUTION ON PEROVSKITES [J].
BOCKRIS, JO ;
OTAGAWA, T .
JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (15) :2960-2971
[4]   Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism [J].
Burke, Michaela S. ;
Kast, Matthew G. ;
Trotochaud, Lena ;
Smith, Adam M. ;
Boettcher, Shannon W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) :3638-3648
[5]   Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy [J].
Cai, Weizheng ;
Chen, Rong ;
Yang, Hongbin ;
Tao, Hua Bing ;
Wang, Hsin-Yi ;
Gao, Jiajian ;
Liu, Wei ;
Liu, Song ;
Hung, Sung-Fu ;
Liu, Bin .
NANO LETTERS, 2020, 20 (06) :4278-4285
[6]   Amorphous Nanocages of Cu-Ni-Fe Hydr(oxy)oxide Prepared by Photocorrosion For Highly Efficient Oxygen Evolution [J].
Cai, Zhi ;
Li, Lidong ;
Zhang, Youwei ;
Yang, Zhao ;
Yang, Jie ;
Guo, Yingjie ;
Guo, Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (13) :4189-4194
[7]   Engineering superhydrophilic/superaerophobic hierarchical structures of Co-CH@NiFe-LDH/NF to boost the oxygen evolution reaction [J].
Cao, Shuai ;
Huang, Haijian ;
Shi, Kun ;
Wei, Li ;
You, Ning ;
Fan, Xiaoming ;
Yang, Zeheng ;
Zhang, Weixin .
CHEMICAL ENGINEERING JOURNAL, 2021, 422
[8]   A hierarchical CuO@NiCo layered double hydroxide core-shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction [J].
Cao, Yang ;
Wang, Ting ;
Li, Xue ;
Zhang, Longcheng ;
Luo, Yonglan ;
Zhang, Fang ;
Asiri, Abdullah M. ;
Hu, Jianming ;
Liu, Qian ;
Sun, Xuping .
INORGANIC CHEMISTRY FRONTIERS, 2021, 8 (12) :3049-3054
[9]   Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications [J].
Chang, Jeng-Kuei ;
Wu, Chih-Ming ;
Sun, I-Wen .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (18) :3729-3735
[10]   Interfacial Interaction between FeOOH and Ni-Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis [J].
Chen, Jiande ;
Zheng, Feng ;
Zhang, Shao-Jian ;
Fisher, Adrian ;
Zhou, Yao ;
Wang, Zeyu ;
Li, Yuyang ;
Xu, Bin-Bin ;
Li, Jun-Tao ;
Sun, Shi-Gang .
ACS CATALYSIS, 2018, 8 (12) :11342-11351