Liouville-type theorems for the stationary incompressible inhomogeneous Hall-MHD and MHD equations

被引:3
作者
Liu, Pan [1 ,2 ]
机构
[1] Yulin Univ, Sch Math & Stat, Yulin 719000, Shaanxi, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Liouville-type theorems; Hall-MHD equations; MHD equations; GLOBAL WELL-POSEDNESS; NAVIER-STOKES; MAGNETOHYDRODYNAMICS SYSTEM; EXISTENCE; DENSITY; REGULARITY;
D O I
10.1007/s43037-022-00236-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is devoted to the Liouville-type problem for the three-dimensional stationary incompressible inhomogeneous MHD and Hall-MHD equations without any integrability condition for (del u,del B). More precisely, we show that the velocity fieldu and the magnetic field B, satisfying some suitable growth conditions at infin-ity for the mean oscillations of the potential functions, are identically equal to zero provided that the density rho is essentially bounded.
引用
收藏
页数:33
相关论文
共 48 条
[1]   KINETIC FOR MULATION AND GLOBAL EXISTENCE FOR THE HALL-MAGNETO-HYDRODYNAMICS SYSTEM [J].
Acheritogaray, Marion ;
Degond, Pierre ;
Frouvelle, Amic ;
Liu, Jian-Guo .
KINETIC AND RELATED MODELS, 2011, 4 (04) :901-918
[2]   A Regularity Criterion for the 3D Density-Dependent MHD Equations [J].
Alghamdi, Ahmad Mohammad ;
Gala, Sadek ;
Ragusa, Maria Alessandra ;
Zhang, Zujin .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (02) :241-251
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[4]   Global well-posedness of the 3D incompressible MHD equations with variable density [J].
Bie, Qunyi ;
Wang, Qiru ;
Yao, Zheng-an .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 :85-105
[5]  
Chae D, 2022, Z ANGEW MATH PHYS, V73, DOI 10.1007/s00033-022-01701-3
[6]   On Liouville type theorems for the stationary MHD and Hall-MHD systems [J].
Chae, Dongho ;
Wolf, Jorg .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 295 :233-248
[7]   LIOUVILLE TYPE THEOREMS FOR THE STEADY AXIALLY SYMMETRIC NAVIER-STOKES AND MAGNETOHYDRODYNAMIC EQUATIONS [J].
Chae, Dongho ;
Weng, Shangkun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) :5267-5285
[8]   Well-posedness for Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Degond, Pierre ;
Liu, Jian-Guo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :555-565
[9]   Liouville-Type Theorems for the Forced Euler Equations and the Navier-Stokes Equations [J].
Chae, Dongho .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) :37-48
[10]   Remarks on Liouville-Type Theorems for the Steady MHD and Hall-MHD Equations [J].
Chen, Xiaomeng ;
Li, Shuai ;
Wang, Wendong .
JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (01)