Magnetic relaxation of a system of interacting magnetic nanoparticles at finite temperature

被引:3
作者
Salvador, Marcelo [1 ]
Nicolao, Lucas [1 ]
Figueiredo, Wagner [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Fis, Campus Univ, BR-88040900 Florianopolis, SC, Brazil
基金
巴西圣保罗研究基金会;
关键词
Magnetic nanoparticle; Blocking temperature; Landau-Lifshitz-Gilbert equation; Micromagnetism; One-dimensional chain; Magnetic anisotropy; DIPOLAR INTERACTIONS; ANISOTROPY; DEPENDENCE; SIMULATION; PARTICLES; DYNAMICS;
D O I
10.1016/j.physb.2022.414497
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We investigate the magnetic relaxation of a system of interacting single-domain magnetic nanoparticles, where the uniaxial energy density depends on temperature. Particles of different sizes are placed in random positions along a linear chain. For each value of temperature, the stochastic Landau-Lifshitz-Gilbert equation is numerically integrated. Applying an appropriate scaling function we determine the magnetic relaxation as a function of time and temperature as well as the energy barrier distribution of the system as a function of the mean distance between neighbor particles. We show that the typical energy barrier is not a monotonic function of the dipolar coupling. It decreases with the separation between particles until it reaches a minimum. For weaker dipolar interactions, the antiferromagnetic part could be responsible for enhancing the local uniaxial energy barriers. The decrease of the energy barrier for small values of the dipolar coupling was seen experimentally for the magnetoferritin nanoparticle.
引用
收藏
页数:7
相关论文
共 67 条
  • [1] Relaxation in one-dimensional chains of interacting magnetic nanoparticles: Analytical formula and kinetic Monte Carlo simulations
    Anand, Manish
    Banerjee, Varsha
    Carrey, Julian
    [J]. PHYSICAL REVIEW B, 2019, 99 (02)
  • [2] Mechanism of the giant magnetoresistance in UNiGa from first-principles of calculations
    Antonov, VN
    Perlov, AY
    Oppeneer, PM
    Yaresko, AN
    Halilov, SV
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (26) : 5253 - 5256
  • [3] Magnetic interaction and anisotropy axes arrangement in nanoparticle aggregates can enhance or reduce the effective magnetic anisotropy
    Aquino, V. R. R.
    Figueiredo, L. C.
    Coaquira, J. A. H.
    Sousa, M. H.
    Bakuzis, A. F.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 498
  • [4] Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation
    Aron, Camille
    Barci, Daniel G.
    Cugliandolo, Leticia F.
    Arenas, Zochil Gonzalez
    Lozano, Gustavo S.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [5] Fundamentals and applications of the Landau-Lifshitz-Bloch equation
    Atxitia, U.
    Hinzke, D.
    Nowak, U.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (03)
  • [6] Landau-Lifshitz-Bloch equation for ferrimagnetic materials
    Atxitia, U.
    Nieves, P.
    Chubykalo-Fesenko, O.
    [J]. PHYSICAL REVIEW B, 2012, 86 (10):
  • [7] Ordering effects of the dipolar interaction in lattices of small magnetic particles
    Bahiana, M
    Nunes, JPP
    Altbir, D
    Vargas, P
    Knobel, M
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 281 (2-3) : 372 - 377
  • [8] Fast switching of magnetic nanoparticles: Simulation of thermal noise effects using the Langevin dynamics
    Berkov, DV
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) : 2489 - 2495
  • [9] Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia
    Branquinho, Luis C.
    Carriao, Marcus S.
    Costa, Anderson S.
    Zufelato, Nicholas
    Sousa, Marcelo H.
    Miotto, Ronei
    Ivkov, Robert
    Bakuzis, Andris F.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [10] Brown W. F., 1959, J APPL PHYS, V30, pS130, DOI 10.1063/1.2185851