Study of the vortex chamber and its application for the development of novel measurement and control devices

被引:1
作者
Levitsky, Inna [1 ]
机构
[1] Shamoon Coll Engn, Dept Chem Engn, POB 950, IL-84100 Beer Sheva, Israel
关键词
axial vortex; flow rate coefficient; pressure stabilizer; vortex chamber; vortex throttle; HYDRAULIC PARAMETERS; AIR-CORE; FLOW;
D O I
10.1515/tjj-2021-0011
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Based on studies of the flow structure in a short cylindrical vortex chamber, the dependence of the flow rate coefficient on its geometric parameters is proposed. It is shown that the liquid flow form in the chamber's axial vortex the pressure on which surface is corresponds to the pressure of the outflow cavity. These results are used to measure pressure in high-temperature cavities, using a sleeve with a diameter equal to or slightly larger than the diameter of the axial vortex. The sleeve is installed in the vortex chamber, and connects the pressure on its surface to the pressure sensor. The possibility of using a vortex chamber as a damper of pressure fluctuations has been substantiated. The design of the vortex damper and its tests results are presented; these show the possibility of increasing the stabilization time of the outlet pressure more than three-fold. Variants of regulating devices with a vortex chamber, functioning without changing the flow cross-sections, are proposed and the results of their tests are presented. This is achieved either by introducing an obstacle into the chamber cavity or by displacing the axis of the outlet nozzle position.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 24 条
[1]  
Bengtsson KUM, 1998, TWENTY-SEVENTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, P1393
[2]  
Borisenko AI., 1962, GAS DYNAMICS ENGINES
[3]  
Cyred N., 1987, SWIRLING FLOWS
[4]   Numerical prediction of air core diameter, coefficient of discharge and spray cone angle of a swirl spray pressure nozzle [J].
Datta, A ;
Som, SK .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2000, 21 (04) :412-419
[5]  
Dityakin YF., 1977, ATOMIZATION LIQUIDS, P207
[6]  
Fox LS., 2002, 14 WORLD HYDR EN C C
[7]  
Gunther, 1987, U.S. Patent, Patent No. [4,660,524, 4660524]
[8]   Initiation of air core in a simplex nozzle and the effects of operating and geometrical parameters on its shape and size [J].
Halder, MR ;
Dash, SK ;
Som, SK .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2002, 26 (08) :871-878
[9]  
Hutt JJ., 1995, LIQUID ROCKET ENGINE
[10]   On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion phenomena [J].
Isselin, JC ;
Alloncle, AP ;
Autric, M .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (10) :5766-5771