All-optically controlled holographic plasmonic vortex array for multiple metallic particles manipulation

被引:1
作者
Ju, Zhendong [1 ,2 ]
Ma, Haixiang [1 ,2 ,3 ]
Zhang, Shuoshuo [1 ,2 ]
Xie, Xi [1 ,2 ]
Min, Changjun [1 ,2 ]
Zhang, Yuquan [1 ,2 ]
Yuan, Xiaocong [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Inst Microscale Optoelect, Nanophoton Res Ctr, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China
[3] Res Inst Intelligent Sensing, Res Ctr Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
TWEEZERS; FIELD;
D O I
10.1364/OL.507098
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Due to the sub-diffraction-limited size and giant field enhancement, plasmonic tweezers have a natural advantage in trapping metallic particles. However, the strict excitation condition makes it difficult to generate an arbitrary plasmonic field in a controllable manner, thus narrowing its practical applications. Here, we propose an all-optical plasmonic field shaping method based on a digital holographic algorithm and generate plasmonic vortex arrays with controllable spot numbers, spatial location, and topological charge. Our experimental results demonstrate that multiple gold particles can be stably trapped and synchronously rotated in the vortex arrays, and the particles' kinestate can be dynamically switched. The proposed holographic plasmonic vortex tweezers are suitable for a broadband particle trapping, and this method can be generalized to other surface electromagnetic waves like Bloch surface wave.(c) 2023 Optica Publishing Group
引用
收藏
页码:6577 / 6580
页数:4
相关论文
共 31 条
  • [1] Plasmonic vortices: a review
    Bai, Yihua
    Yan, Jiadian
    Lv, Haoran
    Yang, Yuanjie
    [J]. JOURNAL OF OPTICS, 2022, 24 (08)
  • [2] Surface plasmon-polariton amplifiers and lasers
    Berini, Pierre
    De Leon, Israel
    [J]. NATURE PHOTONICS, 2012, 6 (01) : 16 - 24
  • [3] Berthelot J, 2014, NAT NANOTECHNOL, V9, P295, DOI [10.1038/nnano.2014.24, 10.1038/NNANO.2014.24]
  • [4] Long-range optofluidic control with plasmon heating
    Ciraulo, B.
    Garcia-Guirado, J.
    de Miguel, I.
    Ortega Arroyo, J.
    Quidant, R.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] Cell protrusions and contractions generate long-range membrane tension propagation
    De Belly, Henry
    Yan, Shannon
    da Rocha, Hudson Borja
    Ichbiah, Sacha
    Town, Jason P.
    Zager, Patrick J.
    Estrada, Dorothy C.
    Meyer, Kirstin
    Turlier, Herve
    Bustamante, Carlos
    Weiner, Orion D.
    [J]. CELL, 2023, 186 (14) : 3049 - +
  • [6] Emission pattern of surface-enhanced Raman scattering from single nanoparticle-film junction
    Du, Luping
    Tang, Dingyuan
    Yuan, Guanghui
    Wei, Shibiao
    Yuan, Xiaocong
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (08)
  • [7] Optical tweezers across scales in cell biology
    Favre-Bulle, Itia A.
    Scott, Ethan K.
    [J]. TRENDS IN CELL BIOLOGY, 2022, 32 (11) : 932 - 946
  • [8] Towards higher-dimensional structured light
    He, Chao
    Shen, Yijie
    Forbes, Andrew
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
  • [9] Holographic Plasmonic Nanotweezers for Dynamic Trapping and Manipulation
    Huft, Preston R.
    Kolbow, Joshua D.
    Thweatt, Jonathan T.
    Lindquist, Nathan C.
    [J]. NANO LETTERS, 2017, 17 (12) : 7920 - 7925
  • [10] Juan ML, 2011, NAT PHOTONICS, V5, P349, DOI [10.1038/NPHOTON.2011.56, 10.1038/nphoton.2011.56]