Uniformly expanding random walks on manifolds

被引:0
作者
Elliott Smith, Rosemary [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
dynamical systems; uniform expansion; smooth dynamics; dynamics; 37Cxx;
D O I
10.1088/1361-6544/acfa5a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct uniformly expanding random walks on smooth manifolds. Potrie showed that given any open set U of Diffvol & INFIN;(T2) , there exists an uniformly expanding random walk & mu; supported on a finite subset of U. In this paper we extend those results to closed manifolds of any dimension, building on the work of Potrie and Chung to build a robust class of examples. Adapting to higher dimensions, we work with a new definition of uniform expansion that measures volume growth in subspaces rather than norm growth of single vectors.
引用
收藏
页码:5955 / 5972
页数:18
相关论文
共 50 条
[31]   Extensions and solutions for nonlinear diffusion equations and random walks [J].
Lenzi, E. K. ;
Lenzi, M. K. ;
Ribeiro, H. V. ;
Evangelista, L. R. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2231)
[32]   Random walks and Laplacians on hypergraphs: When do they match? [J].
Mulas, Raffaella ;
Kuehn, Christian ;
Boehle, Tobias ;
Jost, Jurgen .
DISCRETE APPLIED MATHEMATICS, 2022, 317 :26-41
[33]   Glass transition and random walks on complex energy landscapes [J].
Baronchelli, Andrea ;
Barrat, Alain ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW E, 2009, 80 (02)
[34]   Random walks of intermittently self-propelled particles [J].
Datta, Agniva ;
Beta, Carsten ;
Grossmann, Robert .
PHYSICAL REVIEW RESEARCH, 2024, 6 (04)
[35]   Continuous Time Random Walks with Reactions Forcing and Trapping [J].
Angstmann, C. N. ;
Donnelly, I. C. ;
Henry, B. I. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (02) :17-27
[36]   Learning by random walks in the weight space of the Ising perceptron [J].
Huang, Haiping ;
Zhou, Haijun .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[37]   Field theories for loop-erased random walks [J].
Wiese, Kay Jorg ;
Fedorenko, Andrei A. .
NUCLEAR PHYSICS B, 2019, 946
[38]   Random walks with long-range memory on networks [J].
Guerrero-Estrada, Ana Gabriela ;
Riascos, Alejandro P. ;
Boyer, Denis .
CHAOS, 2025, 35 (01)
[39]   PATTERN FORMATION AND OSCILLATIONS IN NONLINEAR RANDOM WALKS ON NETWORKS [J].
Skardal, Per Sebastian .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (05) :1767-1784
[40]   Subdiffusion in time-averaged, confined random walks [J].
Neusius, Thomas ;
Sokolov, Igor M. ;
Smith, Jeremy C. .
PHYSICAL REVIEW E, 2009, 80 (01)