Uniformly expanding random walks on manifolds

被引:0
作者
Elliott Smith, Rosemary [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
dynamical systems; uniform expansion; smooth dynamics; dynamics; 37Cxx;
D O I
10.1088/1361-6544/acfa5a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct uniformly expanding random walks on smooth manifolds. Potrie showed that given any open set U of Diffvol & INFIN;(T2) , there exists an uniformly expanding random walk & mu; supported on a finite subset of U. In this paper we extend those results to closed manifolds of any dimension, building on the work of Potrie and Chung to build a robust class of examples. Adapting to higher dimensions, we work with a new definition of uniform expansion that measures volume growth in subspaces rather than norm growth of single vectors.
引用
收藏
页码:5955 / 5972
页数:18
相关论文
共 50 条
[21]   Non-random walks in monkeys and humans [J].
Boyer, Denis ;
Crofoot, Margaret C. ;
Walsh, Peter D. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (70) :842-847
[22]   On moments and scaling regimes in anomalous random walks [J].
Schmiedeberg, Michael ;
Zaburdaev, Vasily Yu ;
Stark, Holger .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
[23]   Random walks, Kleinian groups, and bifurcation currents [J].
Deroin, Bertrand ;
Dujardin, Romain .
INVENTIONES MATHEMATICAE, 2012, 190 (01) :57-118
[24]   Analysis of Correlation Bounds for Uniformly Expanding Maps on [0, 1] [J].
Abdelkader, Mohamed .
AXIOMS, 2023, 12 (12)
[25]   Strong stochastic stability for non-uniformly expanding maps [J].
Alves, Jose F. ;
Vilarinho, Helder .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 :647-692
[26]   SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM WALKS IN RANDOM CONDUCTANCES [J].
Fribergh, Alexander ;
Kious, Daniel .
ANNALS OF PROBABILITY, 2018, 46 (02) :605-686
[27]   Non-Gaussian propagator for elephant random walks [J].
da Silva, M. A. A. ;
Cressoni, J. C. ;
Schuetz, Gunter M. ;
Viswanathan, G. M. ;
Trimper, Steffen .
PHYSICAL REVIEW E, 2013, 88 (02)
[28]   EXTREME VALUE THEORY FOR RANDOM WALKS ON HOMOGENEOUS SPACES [J].
Kirsebom, Maxim Solund .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) :4689-4717
[29]   Random walks on activity-driven networks with attractiveness [J].
Alessandretti, Laura ;
Sun, Kaiyuan ;
Baronchelli, Andrea ;
Perra, Nicola .
PHYSICAL REVIEW E, 2017, 95 (05) :052318
[30]   Extensions and solutions for nonlinear diffusion equations and random walks [J].
Lenzi, E. K. ;
Lenzi, M. K. ;
Ribeiro, H. V. ;
Evangelista, L. R. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2231)