Uniformly expanding random walks on manifolds

被引:0
|
作者
Elliott Smith, Rosemary [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
dynamical systems; uniform expansion; smooth dynamics; dynamics; 37Cxx;
D O I
10.1088/1361-6544/acfa5a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct uniformly expanding random walks on smooth manifolds. Potrie showed that given any open set U of Diffvol & INFIN;(T2) , there exists an uniformly expanding random walk & mu; supported on a finite subset of U. In this paper we extend those results to closed manifolds of any dimension, building on the work of Potrie and Chung to build a robust class of examples. Adapting to higher dimensions, we work with a new definition of uniform expansion that measures volume growth in subspaces rather than norm growth of single vectors.
引用
收藏
页码:5955 / 5972
页数:18
相关论文
共 50 条
  • [1] Adapted random perturbations for non-uniformly expanding maps
    Araujo, Vitor
    Pacifico, Maria Jose
    Pinheiro, Mariana
    STOCHASTICS AND DYNAMICS, 2014, 14 (04)
  • [2] Thermodynamic Formalism for Random Non-uniformly Expanding Maps
    Stadlbauer, Manuel
    Suzuki, Shintaro
    Varandas, Paulo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 385 (01) : 369 - 427
  • [3] Limit Theorems for Random Non-uniformly Expanding or Hyperbolic Maps with Exponential Tails
    Hafouta, Yeor
    ANNALES HENRI POINCARE, 2022, 23 (01): : 293 - 332
  • [4] Biased random walks on random graphs
    Ben Arous, Gerard
    Fribergh, Alexander
    PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 : 99 - 153
  • [5] Random walks on hypergraphs
    Carletti, Timoteo
    Battiston, Federico
    Cencetti, Giulia
    Fanelli, Duccio
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [6] Random walks on spatial networks
    Dou Fei-Ling
    Hu Yan-Qing
    Li Yong
    Fan Ying
    Di Zeng-Ru
    ACTA PHYSICA SINICA, 2012, 61 (17)
  • [7] RANDOM WALKS ON THE MAPPING CLASS GROUP
    Maher, Joseph
    DUKE MATHEMATICAL JOURNAL, 2011, 156 (03) : 429 - 468
  • [8] Brownian bridges for contained random walks
    Curtis, George
    Ramkrishna, Doraiswami
    Narsimhan, Vivek
    AICHE JOURNAL, 2025,
  • [9] Dynamic random walks on Heisenberg groups
    Guillotin-Plantard, Nadine
    Schott, Rene
    JOURNAL OF THEORETICAL PROBABILITY, 2006, 19 (02) : 377 - 395
  • [10] Random walks in correlated diffusivity landscapes
    Pacheco-Pozo, Adrian
    Sokolov, Igor M.
    EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (11)