Prevention of Sensitization and Fracture Analysis of Keyhole Plasma Arc Welded AISI 304 HCu Tube Joints

被引:1
作者
Jones, P. G. Sam Infant [1 ]
Rajakumar, S. [1 ]
Kavitha, S. [1 ,2 ]
Balasubramanian, V. [1 ]
机构
[1] Annamalai Univ, Fac Engn & Technol, Dept Mfg Engn, Chidambaram, Tamil Nadu, India
[2] Annamalai Univ, Fac Engn & Technol, Dept Elect & Instrumentat Engn, Chidambaram, Tamil Nadu, India
关键词
Austenite; Plasma; Dendrites; Mechanical property; Microstructure; Corrosion; GAS TUNGSTEN ARC; AUSTENITIC STAINLESS-STEEL; STRAIN-HARDENING BEHAVIOR; HOT TENSILE PROPERTIES; MICROSTRUCTURE; GTAW;
D O I
10.1007/s11668-023-01691-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reheaters and superheaters of the Advanced Ultra Supercritical (AUSC) Boilers prefer AISI304 HCu. The steels are prone to sensitization on welding (550 to 900 & DEG;C), segregation of alloying elements, and wider bead profiles, resulting in the degradation of joint properties. Plasma Arc Welding by keyhole mode (KPAW) provided a better solution by autogenously joining 9 mm thick tube joints in a single pass. The KPAW joint has minimum bead geometry compared to Tungsten Inert Gas (TIG) welds. The strength of the KPAW joints (610 MPa) is 17% higher than the TIG joints (502 MPa) and close to the strength of the base material. The homogenous morphology of the KPAW joint with fine dendrites of & delta;-ferrite enhances the properties of welded joints. The cooling rate influences the finer nucleation of dendrites with minimal arm spacing of 12.4 & mu;m per unit area. The estimated cooling rate for the KPAW joint is around 0.97 x 10(5) K/s, which results in an average dendritic length of 69 & mu;m.
引用
收藏
页码:1538 / 1549
页数:12
相关论文
共 43 条
  • [21] Microstructure and Low-Temperature Mechanical Properties of 304 Stainless Steel Joints by PAW plus GTAW Combined Welding
    Liu, Kun
    Li, Yajiang
    Wang, Juan
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (10) : 4561 - 4573
  • [22] Microstructure and mechanical properties of alloy C-276 weldments fabricated by continuous and pulsed current gas tungsten arc welding techniques
    Manikandan, M.
    Arivazhagan, N.
    Rao, M. Nageswara
    Reddy, G. M.
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2014, 16 (04) : 563 - 572
  • [23] Martikainen J. K., 1993, INVESTIGATION EFFECT
  • [24] Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel
    Mirshekari, G. R.
    Tavakoli, E.
    Atapour, M.
    Sadeghian, B.
    [J]. MATERIALS & DESIGN, 2014, 55 : 905 - 911
  • [25] VARIATION OF IMPACT TOUGHNESS OF AS-BUILT DMLS TI6AL4V (ELI) SPECIMENS WITH TEMPERATURE
    Muiruri, A. M.
    Maringa, M.
    du Preez, W. B.
    Masu, L. M.
    [J]. SOUTH AFRICAN JOURNAL OF INDUSTRIAL ENGINEERING, 2018, 29 (03): : 284 - 298
  • [26] Effect of Heat Input on Mechanical and Metallurgical Properties of Gas Tungsten Arc Welded Lean Super Martensitic Stainless Steel
    Muthusamy, Chellappan
    Karuppiah, Lingadurai
    Paulraj, Sathiya
    Kandasami, Devakumaran
    Kandhasamy, Raja
    [J]. MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2016, 19 (03): : 572 - 579
  • [27] Tensile properties and strain-hardening behaviour of friction stir welded SiCp/AA2009 composite joints
    Ni, D. R.
    Chen, D. L.
    Wang, D.
    Xiao, B. L.
    Ma, Z. Y.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 608 : 1 - 10
  • [28] Rizvi SA., 2018, IRASE, V9, P9
  • [29] The effect of pulse current changes in PCGTAW on microstructural evolution, drastic improvement in mechanical properties, and fracture mode of dissimilar welded joint of AISI 316L-AISI 310S stainless steels
    Sabzi, M.
    Anijdan, S. H. Mousavi
    Eivani, A. R.
    Park, N.
    Jafarian, H. R.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 823
  • [30] Sam Infant Jones P.G., 2022, Weld. Int., V36, P655