GFL: Federated Learning on Non-IID data via Privacy-preserving Synthetic data

被引:9
|
作者
Cheng, Yihang [1 ]
Zhang, Lan [1 ,2 ]
Li, Anran [3 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Nanyang Technol Univ, Singapore, Singapore
来源
2023 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS, PERCOM | 2023年
基金
国家重点研发计划;
关键词
Federated Learning; Non-IID; Membership Inference Attack;
D O I
10.1109/PERCOM56429.2023.10099110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) enables large amounts of participants to construct a global learning model, while storing training data privately at local client devices. A fundamental issue in FL systems is the susceptibility to the highly skewed distributed data. A series of methods have been proposed to mitigate the Non-IID problem by limiting the distances between local models and the global model, but they cannot address the root cause of skewed data distribution eventually. Some methods share extra samples from the server to clients, which requires comprehensive data collection by the server and may raise potential privacy risks. In this work, we propose an efficient and adaptive framework, named Generative Federated Learning (GFL), to solve the skewed data problem in FL systems in a privacy-friendly way. We introduce Generative Adversarial Networks (GAN) into FL to generate synthetic data, which can be used by the server to balance data distributions. To keep the distribution and membership of clients' data private, the synthetic samples are generated with random distributions and protected by a differential privacy mechanism. The results show that GFL significantly outperforms existing approaches in terms of achieving more accurate global models (e.g., 17%-50% higher accuracy) as well as building global models with faster convergence speed without increasing much computation or communication costs.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [41] Heterogeneous Federated Learning for Non-IID Smartwatch Data Classification
    Syu, Jia-Hao
    Lin, Jerry Chun-Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (18): : 29811 - 29818
  • [42] Advanced Optimization Techniques for Federated Learning on Non-IID Data
    Efthymiadis, Filippos
    Karras, Aristeidis
    Karras, Christos
    Sioutas, Spyros
    FUTURE INTERNET, 2024, 16 (10)
  • [43] FedKT: Federated learning with knowledge transfer for non-IID data
    Mao, Wenjie
    Yu, Bin
    Zhang, Chen
    Qin, A. K.
    Xie, Yu
    PATTERN RECOGNITION, 2025, 159
  • [44] FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data
    Zhang, Xinwei
    Hong, Mingyi
    Dhople, Sairaj
    Yin, Wotao
    Liu, Yang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 (69) : 6055 - 6070
  • [45] Federated learning on non-IID and long-tailed data via dual-decoupling
    Wang, Zhaohui
    Li, Hongjiao
    Li, Jinguo
    Hu, Renhao
    Wang, Baojin
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2024, 25 (05) : 728 - 741
  • [46] FedProc: Prototypical contrastive federated learning on non-IID data
    Mu, Xutong
    Shen, Yulong
    Cheng, Ke
    Geng, Xueli
    Fu, Jiaxuan
    Zhang, Tao
    Zhang, Zhiwei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 143 : 93 - 104
  • [47] Adaptive Federated Learning on Non-IID Data With Resource Constraint
    Zhang, Jie
    Guo, Song
    Qu, Zhihao
    Zeng, Deze
    Zhan, Yufeng
    Liu, Qifeng
    Akerkar, Rajendra
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (07) : 1655 - 1667
  • [48] FedAP: Adaptive Personalization in Federated Learning for Non-IID Data
    Yeganeh, Yousef
    Farshad, Azade
    Boschmann, Johann
    Gaus, Richard
    Frantzen, Maximilian
    Navab, Nassir
    DISTRIBUTED, COLLABORATIVE, AND FEDERATED LEARNING, AND AFFORDABLE AI AND HEALTHCARE FOR RESOURCE DIVERSE GLOBAL HEALTH, DECAF 2022, FAIR 2022, 2022, 13573 : 17 - 27
  • [49] Privacy-preserved federated clustering with Non-IID data via GANsPrivacy-preserved federated clustering with Non-IID data...J. Zhao et al.
    Jianzhe Zhao
    Wenji Wang
    Jiabao Wang
    Songyang Zhang
    Zhelin Fan
    Stan Matwin
    The Journal of Supercomputing, 81 (4)
  • [50] A Study of Enhancing Federated Learning on Non-IID Data with Server Learning
    Mai V.S.
    La R.J.
    Zhang T.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 1 - 15