GFL: Federated Learning on Non-IID data via Privacy-preserving Synthetic data

被引:9
|
作者
Cheng, Yihang [1 ]
Zhang, Lan [1 ,2 ]
Li, Anran [3 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Nanyang Technol Univ, Singapore, Singapore
来源
2023 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS, PERCOM | 2023年
基金
国家重点研发计划;
关键词
Federated Learning; Non-IID; Membership Inference Attack;
D O I
10.1109/PERCOM56429.2023.10099110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) enables large amounts of participants to construct a global learning model, while storing training data privately at local client devices. A fundamental issue in FL systems is the susceptibility to the highly skewed distributed data. A series of methods have been proposed to mitigate the Non-IID problem by limiting the distances between local models and the global model, but they cannot address the root cause of skewed data distribution eventually. Some methods share extra samples from the server to clients, which requires comprehensive data collection by the server and may raise potential privacy risks. In this work, we propose an efficient and adaptive framework, named Generative Federated Learning (GFL), to solve the skewed data problem in FL systems in a privacy-friendly way. We introduce Generative Adversarial Networks (GAN) into FL to generate synthetic data, which can be used by the server to balance data distributions. To keep the distribution and membership of clients' data private, the synthetic samples are generated with random distributions and protected by a differential privacy mechanism. The results show that GFL significantly outperforms existing approaches in terms of achieving more accurate global models (e.g., 17%-50% higher accuracy) as well as building global models with faster convergence speed without increasing much computation or communication costs.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [21] A Novel Approach for Federated Learning with Non-IID Data
    Nguyen, Hiep
    Warrier, Harikrishna
    Gupta, Yogesh
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 62 - 67
  • [22] Fast converging Federated Learning with Non-IID Data
    Naas, Si -Ahmed
    Sigg, Stephan
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [23] FedEL: Federated ensemble learning for non-iid data
    Wu, Xing
    Pei, Jie
    Han, Xian-Hua
    Chen, Yen-Wei
    Yao, Junfeng
    Liu, Yang
    Qian, Quan
    Guo, Yike
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [24] Contractible Regularization for Federated Learning on Non-IID Data
    Chen, Zifan
    Wu, Zhe
    Wu, Xian
    Zhang, Li
    Zhao, Jie
    Yan, Yangtian
    Zheng, Yefeng
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 61 - 70
  • [25] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942
  • [26] Dynamic Clustering Federated Learning for Non-IID Data
    Chen, Ming
    Wu, Jinze
    Yin, Yu
    Huang, Zhenya
    Liu, Qi
    Chen, Enhong
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 119 - 131
  • [27] Decoupled Federated Learning for ASR with Non-IID Data
    Zhu, Han
    Wang, Jindong
    Cheng, Gaofeng
    Zhang, Pengyuan
    Yan, Yonghong
    INTERSPEECH 2022, 2022, : 2628 - 2632
  • [28] Federated split learning via dynamic aggregation and homomorphic encryption on non-IID data
    Liang, Xingzhu
    Xu, Yachen
    Lin, Yu-e
    Zhang, Chunjiong
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [29] Enhanced Federated Learning on Non-iid Data via Local Importance Sampling
    Zhu, Zheqi
    Fan, Pingyi
    Peng, Chenghui
    Letaief, Khaled B.
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 104 - 109
  • [30] Personalized Federated Learning over non-IID Data for Indoor Localization
    Wu, Peng
    Imbiriba, Tales
    Park, Junha
    Kim, Sunwoo
    Closas, Pau
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 421 - 425