Integrability of two-species partially asymmetric exclusion processes

被引:3
作者
Lobaskin, Ivan [1 ]
Evans, Martin R. [1 ]
Mallick, Kirone [2 ,3 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Scotland
[2] Univ Paris Saclay, Inst Phys Theor, CEA, F-91191 Gif Sur Yvette, France
[3] CNRS, F-91191 Gif Sur Yvette, France
基金
英国工程与自然科学研究理事会;
关键词
integrability; Bethe ansatz; PASEP; exactly solvable models; BETHE-ANSATZ SOLUTION; MODEL; DIFFUSION; PARTICLES; EQUATION; STATES;
D O I
10.1088/1751-8121/acc55b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We work towards the classification of all one-dimensional exclusion processes with two species of particles that can be solved by a nested coordinate Bethe ansatz (BA). Using the Yang-Baxter equations, we obtain conditions on the model parameters that ensure that the underlying system is integrable. Three classes of integrable models are thus found. Of these, two classes are well known in literature, but the third has not been studied until recently, and never in the context of the BA. The Bethe equations are derived for the latter model as well as for the associated dynamics encoding the large deviation of the currents.
引用
收藏
页数:15
相关论文
共 46 条
[1]   Exact solution of the asymmetric exclusion model with particles of arbitrary size [J].
Alcaraz, FC ;
Bariev, RZ .
PHYSICAL REVIEW E, 1999, 60 (01) :79-88
[2]   Exact solution of asymmetric diffusion with N classes of particles of arbitrary size and hierarchical order [J].
Alcaraz, FC ;
Bariev, RZ .
BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (04) :655-666
[3]   LATTICE DIFFUSION AND HEISENBERG-FERROMAGNET [J].
ALEXANDER, S ;
HOLSTEIN, T .
PHYSICAL REVIEW B, 1978, 18 (01) :301-302
[4]   Spontaneous breaking of translational invariance in one-dimensional stationary states on a ring [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :L45-L51
[5]   The Gervais-Neveu-Felder equation and the quantum Calogero-Moser systems [J].
Avan, J ;
Babelon, O ;
Billey, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (02) :281-299
[6]  
Baxter R. J., 2016, EXACTLY SOLVED MODEL, DOI DOI 10.1142/9789814415255_0002
[7]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[8]   Nonequilibrium steady states of matrix-product form: a solver's guide [J].
Blythe, R. A. ;
Evans, M. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) :R333-R441
[9]  
Cantini L., 2022, COMMUNICATION