Novel predefined-time control for fractional-order systems and its application to chaotic synchronization

被引:7
作者
Chen, Jiale [1 ]
Zhao, Xiaoshan [1 ,2 ]
Xiao, Jingyu [1 ]
机构
[1] Tianjin Univ Technol & Educ, Sch Sci, Tianjin, Peoples R China
[2] Tianjin Univ Technol & Educ, Sch Sci, Tianjin 300222, Peoples R China
基金
中国国家自然科学基金;
关键词
chaotic systems; fractional; predefined-time stability; synchronization; STABILIZATION; DISTURBANCES;
D O I
10.1002/mma.9871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the fractional calculus and sliding mode control (SMC) techniques, this paper presents a predefined-time synchronization scheme for fractional-order chaotic systems (FOCSs). Firstly, a predefined-time control method is proposed for fractional-order systems. Subsequently, a novel sliding surface is presented to ensure predefined-time convergence of the synchronization error. Then, a controller is designed by combining the predefined-time stability and the SMC method to ensure that the synchronization error converges to zero within the predefined time. Finally, the feasibility and robustness of the scheme are illustrated with two numerical simulation examples.
引用
收藏
页码:5427 / 5440
页数:14
相关论文
共 30 条
[1]   Stabilization of generalized fractional order chaotic systems using state feedback control [J].
Ahmad, WM ;
El-Khazali, R ;
Al-Assaf, Y .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :141-150
[2]   On predefined-time synchronisation of chaotic systems [J].
Alberto Anguiano-Gijon, Carlos ;
Jonathan Munoz-Vazquez, Aldo ;
Diego Sanchez-Torres, Juan ;
Romero-Galvan, Gerardo ;
Martinez-Reyes, Fernando .
CHAOS SOLITONS & FRACTALS, 2019, 122 :172-178
[3]   Fixed-time terminal synergetic observer for synchronization of fractional-order chaotic systems [J].
Balamash, A. S. ;
Bettayeb, M. ;
Djennoune, S. ;
Al-Saggaf, U. M. ;
Moinuddin, M. .
CHAOS, 2020, 30 (07)
[4]   Synchronization control of multiple drive and response fractional-order chaotic systems under uncertainties and external disturbances and its application [J].
Chen, Jiale ;
Zhao, Xiaoshan .
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 11 (03) :1297-1309
[5]  
Sánchez-Tones JD, 2015, P AMER CONTR CONF, P5842, DOI 10.1109/ACC.2015.7172255
[6]   Dynamics and control of initialized fractional-order systems [J].
Hartley, TT ;
Lorenzo, CF .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :201-233
[7]   Fixed-time fractional-order sliding mode control for nonlinear power systems [J].
Huang, Sunhua ;
Wang, Jie .
JOURNAL OF VIBRATION AND CONTROL, 2020, 26 (17-18) :1425-1434
[8]   A Lyapunov-Like Characterization of Predefined-Time Stability [J].
Jimenez-Rodriguez, Esteban ;
Munoz-Vazquez, Aldo Jonathan ;
Sanchez-Torres, Juan Diego ;
Defoort, Michael ;
Loukianov, Alexander G. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (11) :4922-4927
[9]   Single-channel predefined-time synchronisation of chaotic systems [J].
Jonathan Munoz-Vazquez, Aldo ;
Diego Sanchez-Torres, Juan ;
Alberto Anguiano-Gijon, Carlos .
ASIAN JOURNAL OF CONTROL, 2021, 23 (01) :190-198
[10]   Finite time synchronization of chaotic systems [J].
Li, SH ;
Tian, YP .
CHAOS SOLITONS & FRACTALS, 2003, 15 (02) :303-310