Singular-Value Statistics of Non-Hermitian Random Matrices and Open Quantum Systems

被引:11
作者
Kawabata, Kohei [1 ,2 ]
Xiao, Zhenyu [3 ]
Ohtsuki, Tomi [4 ]
Shindou, Ryuichi [3 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[3] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[4] Sophia Univ, Phys Div, Chiyoda Ku, Tokyo 1028554, Japan
来源
PRX QUANTUM | 2023年 / 4卷 / 04期
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
UNIVERSAL CONDUCTANCE FLUCTUATIONS; LOCALIZATION; SYMMETRY; SPECTRUM; THERMALIZATION; EIGENVALUES; REPULSION; ENSEMBLES; PHYSICS;
D O I
10.1103/PRXQuantum.4.040312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral statistics of non-Hermitian random matrices are of importance as a diagnostic tool for chaotic behavior in open quantum systems. Here, we investigate the statistical properties of singular values in non-Hermitian random matrices as an effective measure of quantifying dissipative quantum chaos. By means of Hermitization, we reveal the unique characteristics of the singular-value statistics that distinguish them from the complex-eigenvalue statistics, and establish the comprehensive classification of the singular-value statistics for all the 38-fold symmetry classes of non-Hermitian random matrices. We also analytically derive the singular-value statistics of small random matrices, which well describe those of large random matrices in the similar spirit to the Wigner surmise. Furthermore, we demonstrate that singular values of open quantum many-body systems follow the random-matrix statistics, thereby identifying chaos and nonintegrability in open quantum systems. Our work elucidates that the singular-value statis-tics serve as a clear indicator of symmetry and lay a foundation for statistical physics of open quantum systems.
引用
收藏
页数:24
相关论文
共 50 条
[41]   Wave-packet evolution in non-Hermitian quantum systems [J].
Graefe, Eva-Maria ;
Schubert, Roman .
PHYSICAL REVIEW A, 2011, 83 (06)
[42]   Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems [J].
Bagchi, Bijan ;
Fring, Andreas .
PHYSICS LETTERS A, 2009, 373 (47) :4307-4310
[43]   Quantum parameter estimation of non-Hermitian systems with optimal measurements [J].
Yu, Xinglei ;
Zhang, Chengjie .
PHYSICAL REVIEW A, 2023, 108 (02)
[44]   Winding in non-Hermitian systems [J].
Schindler, Stella T. ;
Bender, Carl M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (05)
[45]   The Double Dyson Index β Effect in Non-Hermitian Tridiagonal Matrices [J].
Goulart, Cleverson A. ;
Pato, Mauricio P. .
ENTROPY, 2023, 25 (06)
[46]   Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices [J].
Erdos, Laszlo ;
Ji, Hong Chang .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (09) :3785-3840
[47]   Superexponential diffusion in nonlinear non-Hermitian systems [J].
Zhao, Wen-Lei ;
Zhou, Longwen ;
Liu, Jie ;
Tong, Peiqing ;
Huang, Kaiqian .
PHYSICAL REVIEW A, 2020, 102 (06)
[48]   Entanglement in non-Hermitian quantum theory [J].
Arun K. Pati .
Pramana, 2009, 73 :485-498
[49]   Linking Scalar Elastodynamics and Non-Hermitian Quantum Mechanics [J].
Shmuel, Gal ;
Moiseyev, Nimrod .
PHYSICAL REVIEW APPLIED, 2020, 13 (02)
[50]   Non-Hermitian dynamics from Hermitian systems: Do-it-yourself [J].
Villegas-Martinez, Braulio M. ;
Soto-Eguibar, Francisco ;
Moya-Cessa, Hector M. ;
Hojman, Sergio A. ;
Asenjo, Felipe A. .
MODERN PHYSICS LETTERS B, 2024, 38 (22)