New insights into nanomedicines for oral delivery of glucagon-like peptide-1 analogs

被引:5
作者
Pinto, Soraia Filipa Tavares [1 ,2 ]
Santos, Helder Almeida [3 ,4 ,5 ]
Sarmento, Bruno Filipe Carmelino Cardoso [1 ,6 ,7 ]
机构
[1] Univ Porto, Inst Invest & Inovacao Saude I3S, Porto, Portugal
[2] Univ Porto, Inst Ciencias Biomed Abel Salazar ICBAS, Porto, Portugal
[3] Univ Helsinki, Fac Pharm, Drug Res Program, Div Pharmaceut Chem & Technol, Helsinki, Finland
[4] Univ Groningen, Univ Med Ctr Groningen, WJ Kolff Inst Biomed Engn & Mat Sci, Groningen, Netherlands
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Engn, Groningen, Netherlands
[6] CESPU, IUCS, Gandra, Portugal
[7] Univ Porto, Inst Invest & Inovacao Saude I3S, Rua Alfredo Allen 208, P-4200135 Porto, Portugal
关键词
antidiabetic peptides; glucagon-like peptide-1; nanocarriers; oral delivery; type 2 diabetes mellitus; GLP-1 RECEPTOR AGONIST; TYPE-2; DIABETES-MELLITUS; BETA-CELL FUNCTION; POLYMERIC NANOPARTICLES; DPP4; INHIBITOR; DRUG DELIVERY; DUAL GIP; EXENATIDE; GLUCOSE; SYSTEM;
D O I
10.1002/wnan.1952
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
引用
收藏
页数:26
相关论文
共 100 条
[1]   Quantifying the Value of Orally Delivered Biologic Therapies: A Cost-Effectiveness Analysis of Oral Semaglutide [J].
Abramson, Alex ;
Halperin, Florencia ;
Kim, Jane ;
Traverso, Giovanni .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2019, 108 (09) :3138-3145
[2]   Glucagon-Like Peptide-1 Receptor Agonists and Strategies To Improve Their Efficiency [J].
Alavi, Seyed Ebrahim ;
Cabot, Peter J. ;
Moyle, Peter M. .
MOLECULAR PHARMACEUTICS, 2019, 16 (06) :2278-2295
[3]   Drug release testing methods of polymeric particulate drug formulations [J].
Amatya S. ;
Park E.J. ;
Park J.H. ;
Kim J.S. ;
Seol E. ;
Lee H. ;
Choi H. ;
Shin Y.-H. ;
Na D.H. .
Journal of Pharmaceutical Investigation, 2013, 43 (4) :259-266
[4]   A Pharmacological and Clinical Overview of Oral Semaglutide for the Treatment of Type 2 Diabetes [J].
Andersen, Andreas ;
Knop, Filip Krag ;
Vilsboll, Tina .
DRUGS, 2021, 81 (09) :1003-1030
[5]   Biodegradation and biocompatibility of PLA and PLGA microspheres [J].
Anderson, JM ;
Shive, MS .
ADVANCED DRUG DELIVERY REVIEWS, 1997, 28 (01) :5-24
[6]   Semaglutide for type 2 diabetes mellitus: A systematic review and meta-analysis [J].
Andreadis, Panagiotis ;
Karagiannis, Thomas ;
Malandris, Konstantinos ;
Avgerinos, Ioannis ;
Liakos, Aris ;
Manolopoulos, Apostolos ;
Bekiari, Eleni ;
Matthews, David R. ;
Tsapas, Apostolos .
DIABETES OBESITY & METABOLISM, 2018, 20 (09) :2255-2263
[7]   In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy [J].
Araujo, F. ;
Shrestha, N. ;
Gomes, M. J. ;
Herranz-Blanco, B. ;
Liu, D. ;
Hirvonen, J. J. ;
Granja, P. L. ;
Santos, H. A. ;
Sarmento, B. .
NANOSCALE, 2016, 8 (20) :10706-10713
[8]   Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals [J].
Araujo, Francisca ;
das Neves, Jose ;
Martins, Joao Pedro ;
Granja, Pedro L. ;
Santos, Helder A. ;
Sarmento, Bruno .
PROGRESS IN MATERIALS SCIENCE, 2017, 89 :306-344
[9]   Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs [J].
Araujo, Francisca ;
Shrestha, Neha ;
Shahbazi, Mohammad-Ali ;
Liu, Dongfei ;
Herranz-Blanco, Barbara ;
Makila, Ermei M. ;
Salonen, Jarno J. ;
Hirvonen, Jouni T. ;
Granja, Pedro L. ;
Sarmento, Bruno ;
Santos, Helder A. .
ACS NANO, 2015, 9 (08) :8291-8302
[10]   The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium [J].
Araujo, Francisca ;
Shrestha, Neha ;
Shahbazi, Mohammed-Ali ;
Fonte, Pedro ;
Makila, Ermei M. ;
Salonen, Jarno J. ;
Hirvonen, Jouni T. ;
Granja, Pedro L. ;
Santos, Helder A. ;
Sarmento, Bruno .
BIOMATERIALS, 2014, 35 (33) :9199-9207