Hopf and Turing-Hopf bifurcation analysis of a delayed predator-prey model with schooling behavior

被引:1
作者
Ding, Shihua [1 ]
Yang, Rui [1 ]
机构
[1] Shanghai Inst Technol, Coll Sci, Shanghai 201418, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 05期
基金
中国国家自然科学基金;
关键词
Predator-prey model; Schooling behavior; Turing-Hopf bifurcation; Delay; HERD BEHAVIOR; SPATIOTEMPORAL PATTERNS; STABILITY; DIFFUSION; DYNAMICS; SYSTEM;
D O I
10.1007/s00033-023-02099-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present research, we investigate the relevant dynamical mechanisms of a reflection-diffusion predator-prey model that involves time delay and schooling behavior. The existence and local stability of the positive equilibrium are discussed. In addition, the necessary and sufficient conditions regarding Turing instability and delay-induced Hopf bifurcation are obtained via investigating the relevant characteristic equation. Furthermore, by calculating and discussing the normal forms on the center manifold corresponding to the Turing-Hopf bifurcation, we discover the multitude of spatiotemporal dynamics close to the Turing-Hopf bifurcation point subject to appropriate conditions. The numerical simulations are carried out to confirm and expand our theoretical conclusions, which demonstrate that time delay reflects a crucial influence on the spatiotemporal dynamics of the system and will lead to spatially homogeneous and inhomogeneous periodic solutions.
引用
收藏
页数:21
相关论文
共 40 条
[1]   THREE LIMIT CYCLES IN A LESLIE-GOWER PREDATOR-PREY MODEL WITH ADDITIVE ALLEE EFFECT [J].
Aguirre, Pablo ;
Gonzalez-Olivares, Eduardo ;
Saez, Eduardo .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 69 (05) :1244-1262
[2]   Modeling herd behavior in population systems [J].
Ajraldi, Valerio ;
Pittavino, Marta ;
Venturino, Ezio .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) :2319-2338
[3]   Predator-prey dynamics with square root functional responses [J].
Braza, Peter A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) :1837-1843
[4]   Dynamics of a delayed predator-prey model with predator migration [J].
Chen, Yuming ;
Zhang, Fengqin .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (03) :1400-1412
[6]   Optimal harvesting and stability of a predator-prey model for fish populations with schooling behavior [J].
Hacini, Mohamed El Mahdi ;
Hammoudi, Djammel ;
Djilali, Salih ;
Bentout, Soufiane .
THEORY IN BIOSCIENCES, 2021, 140 (02) :225-239
[7]   A predator-prey model with disease in the predator species only [J].
Haque, Mainul .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) :2224-2236
[8]   Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response [J].
Huang, Jicai ;
Ruan, Shigui ;
Song, Jing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) :1721-1752
[9]   Turing bifurcation in a diffusive predator-prey model with schooling behavior [J].
Jiang, Heping .
APPLIED MATHEMATICS LETTERS, 2019, 96 :230-235
[10]   Formulation of the normal form of Turing-Hopf bifurcation in partial functional differential equations [J].
Jiang, Weihua ;
An, Qi ;
Shi, Junping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (10) :6067-6102