A compact 9-23 GHz low noise amplifier with bandwidth extension techniques in 0.18-μm SiGe BiCMOS

被引:2
作者
Luo, Jiang [1 ,2 ]
Chen, Pengwei [3 ]
机构
[1] Hangzhou Dianzi Univ, Key Lab RF Circuit & Syst, Minist Educ, Hangzhou, Peoples R China
[2] Southeast Univ, State Key Lab Millimeter Waves, Nanjing, Peoples R China
[3] Beijing Inst Radio Measurement, Beijing, Peoples R China
关键词
bandwidth extension; inductive peaking; low noise amplifier; negative feedback; SiGe BiCMOS; COMMON-GATE; LNA; DESIGN; POWER; GAIN;
D O I
10.1002/jnm.3137
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel wideband low noise amplifier (LNA) operating in the 9-23 GHz frequency range is presented. The proposed LNA design utilizes a combination technique consisting of pole-tuning technique, shunt resistive-capacitor negative feedback, and gate-capacitive peaking technique to achieve significant bandwidth extension while maintaining acceptable overall performance. For verification, a one-stage triple-stacked LNA using the combination technique is designed and implemented in a 0.18-mu m SiGe BiCMOS heterojunction bipolar transistor (HBT) process. The fabricated prototype demonstrates a peak gain of 13.8 dB at 19.5 GHz, minimum noise figure of 3.1 dB at 14 GHz, 3-dB bandwidth of 14 GHz, and a fractional bandwidth of 87.5%, while consuming a dc power of 39.6 mW. Moreover, the chip occupies a small silicon area of 0.39 mm(2) including all testing pads with a core size of only 0.192 mm(2).
引用
收藏
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 1996, SIGNALS SYSTEMS
[2]   6.7-15.3 GHz, High-Performance Broadband Low-Noise Amplifier With Large Transistor and Two-Stage Broadband Noise Matching [J].
Choi, Han-Woong ;
Kim, Choul-Young ;
Choi, Sunkyu .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2021, 31 (08) :949-952
[3]  
D'heer C., 2022 IEEE EUR SOL ST
[4]   A Millimeter-Wave (23-32 GHz) Wideband BiCMOS Low-Noise Amplifier [J].
El-Nozahi, Mohamed ;
Sanchez-Sinencio, Edgar ;
Entesari, Kamran .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (02) :289-299
[5]   Pole-Converging Intrastage Bandwidth Extension Technique for Wideband Amplifiers [J].
Feng, Guangyin ;
Boon, Chirn Chye ;
Meng, Fanyi ;
Yi, Xiang ;
Yang, Kaituo ;
Li, Chenyang ;
Luong, Howard C. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (03) :769-780
[6]   A 6.512-GHz Balanced Variable-Gain Low-Noise Amplifier With Frequency-Selective Gain Equalization Technique [J].
Gao, Huiyan ;
Li, Nayu ;
Li, Min ;
Wang, Shaogang ;
Zhang, Zijiang ;
Kuan, Yen-Cheng ;
Song, Chunyi ;
Yu, Xiaopeng ;
Gu, Qun Jane ;
Xu, Zhiwei .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (01) :732-744
[7]  
He WP., 2018 IEEE INT C INT
[8]   A W-Band Balanced Power Amplifier Using Broadside Coupled Strip-Line Coupler in SiGe BiCMOS 0.13-μm Technology [J].
Hou, Zhang Ju ;
Yang, Yang ;
Chiu, Leung ;
Zhu, Xi ;
Dutkiewicz, Eryk ;
Vardaxoglou, John C. ;
Xue, Quan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (07) :2139-2150
[9]   An 8-16 GHz SiGe Low Noise Amplifier With Performance Tuning Capability for Mitigation of Radiation-Induced Performance Loss [J].
Howard, Duane C. ;
Saha, Prabir K. ;
Shankar, Subramaniam ;
Diestelhorst, Ryan M. ;
England, Troy D. ;
Lourenco, Nelson E. ;
Kenyon, Eleazar ;
Cressler, John D. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (06) :2837-2846
[10]   A 0.1-52-GHz Triple Cascode Amplifier With Resistive Feedback [J].
Hu, Jianquan ;
Ma, Kaixue .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (08) :538-540