Virtual homological eigenvalues and the Weil-Petersson translation length

被引:1
作者
Liu, Yi [1 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
homological eigenvalue; finite cover; Weil-Petersson metric; translation length; ENTROPY; GROWTH; TORSION; METRICS; VOLUME;
D O I
10.1007/s11425-022-2051-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any pseudo-Anosov automorphism on an orientable closed surface, an inequality is established by bounding certain growth of virtual homological eigenvalues with the Weil-Petersson translation length. The new inequality fits nicely with other known inequalities due to Kojima and McShane (2018) and Le (2014). The new quantity to be considered is the square sum of the logarithmic radii of the homological eigenvalues (with multiplicity) outside the complex unit circle, called the homological Jensen square sum. The main theorem is as follows. For any cofinal sequence of regular finite covers of a given surface, together with lifts of a given pseudo-Anosov, the homological Jensen square sum of the lifts grows at most linearly fast compared with the covering degree, and the square root of the growth rate is at most 1/root 4p times the Weil-Petersson translation length of the given pseudo-Anosov.
引用
收藏
页码:2119 / 2132
页数:14
相关论文
共 22 条
[1]   Limits of canonical forms on towers of Riemann surfaces [J].
Baik, Hyungryul ;
Shokrieh, Farbod ;
Wu, Chenxi .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 :287-304
[2]  
Bridson M. R., 1999, METRIC SPACES NONPOS, DOI [10.1007/978-3-662-12494-9, DOI 10.1007/978-3-662-12494-9]
[3]  
Everest G., 1999, Heights of Polynomials and Entropy in Algebraic Dynamics, DOI [10.1007/978-1-4471-3898-3, DOI 10.1007/978-1-4471-3898-3]
[4]   ENTROPY AND TWISTED COHOMOLOGY [J].
FRIED, D .
TOPOLOGY, 1986, 25 (04) :455-470
[5]   Normal forms for symplectic matrices [J].
Gutt, Jean .
PORTUGALIAE MATHEMATICA, 2014, 71 (02) :109-139
[6]   Riemannian metrics on Teichmuller space [J].
Habermann, L ;
Jost, J .
MANUSCRIPTA MATHEMATICA, 1996, 89 (03) :281-306
[7]  
Hubbard J.H., 2006, Teichmuller Theory: And Applications to Geometry, Topology, and Dynamics
[8]  
Humphreys J., 1972, INTRO LIE ALGEBRAS R, V255
[9]  
Kazhdan D A., 1975, ARITHMETIC VARIETIES, P151
[10]   Normalized entropy versus volume for pseudo-Anosovs [J].
Kojima, Sadayoshi ;
McShane, Greg .
GEOMETRY & TOPOLOGY, 2018, 22 (04) :2403-2426