Deep-learning algorithm to detect fibrosing interstitial lung disease on chest radiographs

被引:18
作者
Nishikiori, Hirotaka [1 ]
Kuronuma, Koji [1 ]
Hirota, Kenichi [2 ]
Yama, Naoya [3 ]
Suzuki, Tomohiro [4 ]
Onodera, Maki [3 ]
Onodera, Koichi [3 ]
Ikeda, Kimiyuki [1 ]
Mori, Yuki [1 ]
Asai, Yuichiro [1 ]
Takagi, Yuzo [5 ]
Honda, Seiwa [4 ]
Ohnishi, Hirofumi [6 ]
Hatakenaka, Masamitsu [3 ]
Takahashi, Hiroki [1 ]
Chiba, Hirofumi [1 ]
机构
[1] Sapporo Med Univ, Sch Med, Dept Resp Med & Allergol, Sapporo, Japan
[2] Sapporo Med Univ Hosp, Dept Med Informat Planning, Sapporo, Japan
[3] Sapporo Med Univ, Sch Med, Dept Diagnost Radiol, Sapporo, Japan
[4] M3 Inc, Tokyo, Japan
[5] SEEDSUPPLY Inc, Fujisawa, Kanagawa, Japan
[6] Sapporo Med Univ, Sch Med, Dept Publ Hlth, Sapporo, Japan
关键词
CLASSIFICATION; PNEUMONIA;
D O I
10.1183/13993003.02269-2021
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
A deep-learning algorithm was developed to detect fibrotic interstitial lung disease using chest radiographs. The algorithm's detection capability was noninferior to that of doctors, including pulmonologists and radiologists. https://bit.ly/3SAClW2
引用
收藏
页数:10
相关论文
共 20 条
[1]  
Aletaha D, 2010, ANN RHEUM DIS, V69, P1580, DOI [10.1136/ard.2010.138461, 10.1002/art.27584]
[2]  
Antoine M, 2020, INTERSTITIAL LUNG DI
[3]   Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs [J].
Cicero, Mark ;
Bilbily, Alexander ;
Dowdell, Tim ;
Gray, Bruce ;
Perampaladas, Kuhan ;
Barfett, Joseph .
INVESTIGATIVE RADIOLOGY, 2017, 52 (05) :281-287
[4]  
Durand T, 2017, PROC CVPR IEEE, P642, DOI DOI 10.1109/CVPR.2017.631
[5]   Nintedanib in Progressive Fibrosing Interstitial Lung Diseases [J].
Flaherty, K. R. ;
Wells, A. U. ;
Cottin, V ;
Devaraj, A. ;
Walsh, S. L. F. ;
Inoue, Y. ;
Richeldi, L. ;
Kolb, M. ;
Tetzlaff, K. ;
Stowasser, S. ;
Coeck, C. ;
Clerisme-Beaty, E. ;
Rosenstock, B. ;
Quaresma, M. ;
Haeufel, T. ;
Goeldner, R-G ;
Schlenker-Herceg, R. ;
Brown, K. K. .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (18) :1718-1727
[6]   Idiopathic interstitial pneumonia - What is the effect of a multidisciplinary approach to diagnosis? [J].
Flaherty, KR ;
King, TE ;
Raghu, G ;
Lynch, JP ;
Colby, TV ;
Travis, WD ;
Gross, BH ;
Kazerooni, EA ;
Toews, GB ;
Long, Q ;
Murray, S ;
Lama, VN ;
Gay, SE ;
Martinez, FJ .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2004, 170 (08) :904-910
[7]   Risk factors for diagnostic delay in idiopathic pulmonary fibrosis [J].
Hoyer, Nils ;
Prior, Thomas Skovhus ;
Bendstrup, Elisabeth ;
Wilcke, Torgny ;
Shaker, Saher Burhan .
RESPIRATORY RESEARCH, 2019, 20 (1)
[8]   Convolutional Networks with Dense Connectivity [J].
Huang, Gao ;
Liu, Zhuang ;
Pleiss, Geoff ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) :8704-8716
[9]   A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis [J].
King, Talmadge E., Jr. ;
Bradford, Williamson Z. ;
Castro-Bernardini, Socorro ;
Fagan, Elizabeth A. ;
Glaspole, Ian ;
Glassberg, Marilyn K. ;
Gorina, Eduard ;
Hopkins, Peter M. ;
Kardatzke, David ;
Lancaster, Lisa ;
Lederer, David J. ;
Nathan, Steven D. ;
Pereira, Carlos A. ;
Sahn, Steven A. ;
Sussman, Robert ;
Swigris, Jeffrey J. ;
Noble, Paul W. .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (22) :2083-2092
[10]   Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks [J].
Lakhani, Paras ;
Sundaram, Baskaran .
RADIOLOGY, 2017, 284 (02) :574-582