Bergman kernels and equidistribution for sequences of line bundles on Kahler manifolds

被引:2
作者
Coman, Dan [1 ]
Lu, Wen [2 ]
Ma, Xiaonan [3 ]
Marinescu, George [4 ,5 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Univ Paris Cite, Batiment Sophie Germain, CNRS, IMJ,PRG,UFR Math,Case 7012, F-75205 Paris 13, France
[4] Univ Cologne, Dept Math & Comp Sci, Weyertal 86-90, D-50931 Cologne, Germany
[5] Romanian Acad, Inst Math Sim Stoilow, Bucharest, Romania
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Bergman kernel; Non-integral K?hler metric; Zeros of random holomorphic; sections; Approximation of currents by; analytic sets; SINGULAR METRICS; ZEROS; APPROXIMATION; SECTIONS; THEOREM;
D O I
10.1016/j.aim.2022.108854
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a sequence of positive Hermitian holomorphic line bun-dles (Lp, hp) on a Kahler manifold X, we establish the asymp-totic expansion of the Bergman kernel of the space of global holomorphic sections of Lp, under a natural convergence as-sumption on the sequence of curvatures c1(Lp, hp). We then apply this to study the asymptotic distribution of common zeros of random sequences of m-tuples of sections of Lp as p -> +infinity. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:34
相关论文
共 37 条
[1]  
[Anonymous], 1981, Ann. of Math. Stud.
[2]  
[Anonymous], Complex analytic and differential geometry
[3]   GENERAL CONCEPT OF QUANTIZATION [J].
BEREZIN, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) :153-174
[4]  
Bismut J.-M., 1992, PUBL MATH I HAUTES E, V74
[5]   A LOCAL INDEX THEOREM FOR NON KAHLER-MANIFOLDS [J].
BISMUT, JM .
MATHEMATISCHE ANNALEN, 1989, 284 (04) :681-699
[6]  
Catlin D, 1999, TRENDS MATH, P1
[7]   Approximation and equidistribution results for pseudo-effective line bundles [J].
Coman, Dan ;
Marinescu, George ;
Viet-Anh Nguyen .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 115 :218-236
[8]   Equidistribution for sequences of line bundles on normal Kahler spaces [J].
Coman, Dan ;
Ma, Xiaonan ;
Marinescu, George .
GEOMETRY & TOPOLOGY, 2017, 21 (02) :923-962
[9]   Holder Singular Metrics on Big Line Bundles and Equidistribution [J].
Coman, Dan ;
Marinescu, George ;
Viet-Anh Nguyen .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (16) :5048-5075
[10]  
Coman D, 2015, ANN SCI ECOLE NORM S, V48, P497