CANDID: Correspondence AligNment for Deep-burst Image Denoising

被引:0
作者
Mallick, Arijit [1 ]
Braun, Raphael [1 ]
Lensch, Hendrik P. A. [1 ]
机构
[1] Univ Tubingen, Dept Comp Graph, Tubingen, Germany
来源
2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV | 2023年
关键词
Burst photography; Denoising; Image alignment;
D O I
10.1109/CRV60082.2023.00038
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advent of mobile phone photography and point-and-shoot cameras, deep-burst imaging is widely used for a number of photographic effects such as depth of field, super-resolution, motion deblurring, and image denoising. In this work, we propose to solve the problem of deep-burst image denoising by including an optical flow-based correspondence estimation module which aligns all the input burst images with respect to a reference frame. In order to deal with varying noise levels the individual burst images are pre-filtered with different settings. Exploiting the established correspondences one network block predicts a pixel-wise spatially-varying filter kernel to smooth each image in the original and prefiltered bursts before fusing all images to generate the final denoised output. The resulting pipeline achieves state-of-the-art results by combining all available information provided by the burst.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 39 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] Bhat G., 2021, Deep reparametrization of multi-frame super-resolution and denoising
  • [3] Bhat G, 2021, Arxiv, DOI [arXiv:2101.10997, DOI 10.48550/ARXIV.2101.10997, 10.48550/ARXIV.2101.10997]
  • [4] Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods
    Bruhn A.
    Weickert J.
    Schnörr C.
    [J]. International Journal of Computer Vision, 2005, 61 (3) : 1 - 21
  • [5] Patch-Based Video Denoising With Optical Flow Estimation
    Buades, Antoni
    Lisani, Jose-Luis
    Miladinovic, Marko
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (06) : 2573 - 2586
  • [6] A Naturalistic Open Source Movie for Optical Flow Evaluation
    Butler, Daniel J.
    Wulff, Jonas
    Stanley, Garrett B.
    Black, Michael J.
    [J]. COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 611 - 625
  • [7] Chen H., 2020, arXiv, DOI 10.48550/arxiv.2012.00364
  • [8] Weighted Multi-Kernel Prediction Network for Burst Image Super-Resolution
    Cho, Wooyeong
    Son, Sanghyeok
    Kim, Dae-Shik
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 404 - 413
  • [9] Dabov Kostadin, 2007, 2007 15th European Signal Processing Conference (EUSIPCO), P145
  • [10] Image denoising by sparse 3-D transform-domain collaborative filtering
    Dabov, Kostadin
    Foi, Alessandro
    Katkovnik, Vladimir
    Egiazarian, Karen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) : 2080 - 2095